Zusammenfassung
Besonders im Bereich des funktionellen Muskelersatzes wie er beispielsweise bei Fazialislähmungen
oder nach Kompartmentsyndrom verwendet wird, geht der resultierende Hebedefekt in
der Regel mit einer funktionellen Einschränkung einher. Das Skelettmuskel Tissue Engineering
könnte sowohl zur Einsparung des Hebedefektes als auch zu einem besseren funktionellen
Ergebnis an der Empfängerstelle führen, da die Zusammensetzung des Transplantates
auf seine speziellen Aufgaben abgestimmt werden könnte. Die Hindernisse, die einer
klinischen Anwendung des Tissue engineerings von Skelettmuskel im Wege stehen, sind
speziellen mechanischen und biologischen Anforderungen an eine geeignete dreidimensionale
Matrix, die außer Biokompatibilität auch eine ausreichende Stabilität bei gleichzeitig
hoher Elastizität zeigen sollte, sowie die unzureichende Differenzierung von implantierten
Muskelvorläuferzellen in vivo. Die Einführung von neuartigen Materialien, wie z. B.
elektrogesponnenen Nanofasern könnte durch die Möglichkeit zur genauen Anpassung der
Matrixeigenschaften wie auch zur parallelen Orientierung der Fasern bald eine geeignete
Matrix liefern. Die Vor- und Nachteile der Anwendung von Muskelvorläuferzellen oder
mesenchymalen Stammzellen werden in diesem Artikel diskutiert. Für die stabile myogene
Differenzierung in vivo stehen bisher nur wenige klinisch anwendbare Methoden zur
Verfügung, jedoch gilt die Neurotisation des gezüchteten Gewebes als Differenzierungsmethode
der Wahl für die spätere Transplantation als funktionellen Muskelersatz. Hier besteht
noch großer Forschungsbedarf zur Etablierung eines geeigneten Modells und der Untersuchung
der induzierten Differenzierung.
Abstract
Tissue engineering of skeletal muscle could have great advantages in every clinical
setting in need of neurovascular muscle transfer, e. g., facial palsy or Volkmann's
contracture. There are 2 great obstacles for the clinical application of engineered
muscle tissue at the moment: firstly, finding a three-dimensional matrix that matches
the demands concerning biocompatibility, stability and elasticity; secondly, the insufficient
differentiation of implanted myoblasts, since myoblast differentiation in vivo is
barely controllable and subject to a variety of influences. Furthermore axial vascularisation
and neurotisation of such tissue-engineered skeletal muscle constructs play a pivotal
role for any later application. An overview of the current status of skeletal muscle
tissue engineering technologies and concepts for future perspective in this emerging
field is presented in this article.
Schlüsselwörter
Angiogenese - Erfahrungen mit Transplantationen - Skelettmuskel - Muskelvorläuferzellen
Key words
angiogenesis - experience with transplantation - skeletal muscle - tissue engineering
- myoblasts
Literatur
1
Pou AM.
Update on new biomaterials and their use in reconstructive surgery.
Curr Opin Otolaryngol Head Neck Surg.
2003;
11
(4)
240-244
2
Ballyns JJ, Bonassar LJ.
Image-guided tissue engineering.
J Cell Mol Med.
2009;
13
(8A)
1428-1436
3
Warnke PH. et al .
Growth and transplantation of a custom vascularised bone graft in a man.
Lancet.
2004;
364
(9436)
766-770
4
Kellouche S. et al .
Tissue engineering for full-thickness burns: a dermal substitute from bench to bedside.
Biochem Biophys Res Commun.
2007;
363
(3)
472-478
5
Vavken P, Samartzis D.
Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee:
a systematic review of controlled trials.
Osteoarthritis Cartilage.
6
Le Grand F, Rudnicki MA.
Skeletal muscle satellite cells and adult myogenesis.
Curr Opin Cell Biol.
2007;
19
(6)
628-633
7
Kuang S. et al .
Asymmetric self-renewal and commitment of satellite stem cells in muscle.
Cell.
2007;
129
(5)
999-1010
8
Weintraub H. et al .
The myoD gene family: nodal point during specification of the muscle cell lineage.
Science.
1991;
251
(4995)
761-766
9
Huang YC, Dennis RG, Baar K.
Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness
to stimulation.
Am J Physiol Cell Physiol.
2006;
291
(1)
C11-7
10
Yaffe D.
Retention of differentiation potentialities during prolonged cultivation of myogenic
cells.
Proc Natl Acad Sci U S A.
1968;
61
(2)
477-483
11
Mollmann H. et al .
Stem cell-mediated natural tissue engineering.
J Cell Mol Med.
2009;
12
Barile L. et al .
Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart.
J Cell Mol Med.
2009;
13
Roche R, Festy F, Fritel X.
Stem cells for stress urinary incontinence: the adipose promise.
J Cell Mol Med.
2009;
14
Brayfield C, Marra K, Rubin JP.
Adipose stem cells for soft tissue regeneration.
Handchir Mikrochir Plast Chir.
42
(2)
124-128
15
Lee RH. et al .
Characterization and expression analysis of mesenchymal stem cells from human bone
marrow and adipose tissue.
Cell Physiol Biochem.
2004;
14
(4-6)
311-324
16
Chen L. et al .
Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing
in mice.
PLoS One.
2009;
4
(9)
e7119
17
Satija NK. et al .
Mesenchymal Stem Cell-based Therapy: A New Paradigm in Regenerative Medicine.
J Cell Mol Med.
2009;
18
Rossignol J. et al .
Mesenchymal stem cells induce a weak immune response in the rat striatum after allo
or xenotransplantation.
J Cell Mol Med.
2009;
19
Amado LC. et al .
Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells
after myocardial infarction.
Proc Natl Acad Sci U S A.
2005;
102
(32)
11474-11479
20
Nesselmann C. et al .
Mesenchymal stem cells and cardiac repair.
J Cell Mol Med.
2008;
12
(5B)
1795-1810
21
Odorfer KI. et al .
Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial
infarction.
J Cell Mol Med.
2008;
12
(6B)
2867-2874
22
Tateishi K. et al .
Stemming heart failure with cardiac- or reprogrammed-stem cells.
J Cell Mol Med.
2008;
12
(6A)
2217-2232
23
Meirelles Lda S, Nardi NB.
Methodology, biology and clinical applications of mesenchymal stem cells.
Front Biosci.
2009;
14
4281-4298
24
Moscoso I. et al .
Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells
into cardiomyocytes for cell transplantation.
Transplant Proc.
2005;
37
(1)
481-482
25
Vandenburgh HH.
Dynamic mechanical orientation of skeletal myofibers in vitro.
Dev Biol.
1982;
93
(2)
438-443
26
Bach AD. et al .
A new approach to tissue engineering of vascularized skeletal muscle.
J Cell Mol Med.
2006;
10
(3)
716-726
27
Beier JP. et al .
Collagen matrices from sponge to nano: new perspectives for tissue engineering of
skeletal muscle.
BMC Biotechnol.
2009;
9
34
28
Kroehne V. et al .
Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation
in cell culture and in grafts.
J Cell Mol Med.
2008;
29
Srouji S. et al .
3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking
scaffold.
J Mater Sci Mater Med.
2007;
30
Arkudas A. et al .
Evaluation of blood vessel ingrowth in fibrin gel subject to type and concentration
of growth factors.
J Cell Mol Med.
2008;
31
Chew SY. et al .
The role of electrospinning in the emerging field of nanomedicine.
Curr Pharm Des.
2006;
12
(36)
4751-4770
32
Nair LS, Bhattacharyya S, Laurencin CT.
Development of novel tissue engineering scaffolds via electrospinning.
Expert Opin Biol Ther.
2004;
4
(5)
659-668
33
Greiner A, Wendorff JH.
Electrospinning: a fascinating method for the preparation of ultrathin fibers.
Angew Chem Int Ed Engl.
2007;
46
(30)
5670-5703
34
Boudriot U. et al .
Electrospinning approaches toward scaffold engineering--a brief overview.
Artif Organs.
2006;
30
(10)
785-792
35
Buttafoco L. et al .
Electrospinning of collagen and elastin for tissue engineering applications.
Biomaterials.
2006;
27
(5)
724-734
36
Su Y. et al .
Fabrication and characterization of biodegradable nanofibrous mats by mix and coaxial
electrospinning.
J Mater Sci Mater Med.
2009;
37
Padin-Iruegas ME. et al .
Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers
improve endogenous and exogenous myocardial regeneration after infarction.
Circulation.
2009;
120
(10)
876-887
38
Chakraborty S. et al .
Electrohydrodynamics: A facile technique to fabricate drug delivery systems.
Adv Drug Deliv Rev.
2009;
61
(12)
1043-1054
39
Sill TJ, von Recum HA.
Electrospinning: applications in drug delivery and tissue engineering.
Biomaterials.
2008;
29
(13)
1989-2006
40
Huber A, Pickett A, Shakesheff KM.
Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel
microfibre arrays.
Eur Cell Mater.
2007;
14
56-63
41
Venugopal J. et al .
In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous
matrices.
Cell Biol Int.
2005;
29
(10)
861-867
42
Vandenburgh HH.
Mechanical forces and their second messengers in stimulating cell growth in vitro.
Am J Physiol.
1992;
262
(3 Pt 2)
R350-R355
43
Vandenburgh HH, Karlisch P, Farr L.
Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen
gel.
In Vitro Cell Dev Biol.
1988;
24
(3)
166-174
44
Yamamoto Y. et al .
Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue
engineering technique.
J Biosci Bioeng.
2009;
108
(6)
538-543
45
Flaibani M. et al .
Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces
and exogenous electrical stimulation.
Tissue Eng Part A.
2009;
15
(9)
2447-2457
46
Stern-Straeter J. et al .
Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time
RT-PCR study.
J Cell Mol Med.
2005;
9
(4)
883-892
47
Liao IC. et al .
Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun
Fibers.
Cell Mol Bioeng.
2008;
1
(2-3)
133-145
48
Thil MA. et al .
Two-way communication for programming and measurement in a miniature implantable stimulator.
Med Biol Eng Comput.
2005;
43
(4)
528-534
49
Bleiziffer O. et al .
T17b murine embryonal endothelial progenitor cells can be induced towards both proliferation
and differentiation in a fibrin matrix.
J Cell Mol Med.
2009;
13
(5)
926-935
50
Fiegel HC. et al .
Fetal Hepatocyte Transplantation in a Vascularized AV-Loop Transplantation Model in
the Rat.
J Cell Mol Med.
2008;
51
Hutmacher DW. et al .
Translating tissue engineering technology platforms into cancer research.
J Cell Mol Med.
2009;
13
(8A)
1417-1427
52
Arkudas A. et al .
Axial prevascularization of porous matrices using an arteriovenous loop promotes survival
and differentiation of transplanted autologous osteoblasts.
Tissue Eng.
2007;
13
(7)
1549-1560
53
Arkudas A. et al .
Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV
loop model.
Mol Med.
2007;
13
(9-10)
480-487
54
Levenberg S. et al .
Engineering vascularized skeletal muscle tissue.
Nat Biotechnol.
2005;
23
(7)
879-884
55
Beier JP. et al .
De novo generation of axially vascularized tissue in a large animal model.
Microsurgery.
2009;
29
(1)
42-51
56
Beier JP. et al .
Axial vascularization of a large volume calcium phosphate ceramic bone substitute
in the sheep AV loop model.
J Tissue Eng Regen Med.
2009;
57
Eberli D. et al .
Optimization of human skeletal muscle precursor cell culture and myofiber formation
in vitro.
Methods.
2009;
47
(2)
98-103
58
Barteau B. et al .
Physicochemical parameters of non-viral vectors that govern transfection efficiency.
Curr Gene Ther.
2008;
8
(5)
313-323
59
Eisenberg I, Alexander MS, Kunkel LM.
miRNAS in normal and diseased skeletal muscle.
J Cell Mol Med.
2009;
13
(1)
2-11
60
Nakasa T. et al .
Acceleration of muscle regeneration by local injection of muscle-specific microRNAs
in rat skeletal muscle injury model.
J Cell Mol Med.
2009;
61
Nelson SF. et al .
Emerging genetic therapies to treat Duchenne muscular dystrophy.
Curr Opin Neurol.
2009;
22
(5)
532-538
62
Bach AD, Beier JP, Stark GB.
Expression of Trisk 51, agrin and nicotinic-acetycholine receptor epsilon-subunit
during muscle development in a novel three-dimensional muscle-neuronal co-culture
system.
Cell Tissue Res.
2003;
314
(2)
263-274
63
Messina A. et al .
Generation of a vascularized organoid using skeletal muscle as the inductive source.
FASEB J.
2005;
19
(11)
1570-1572
64
Noah EM. et al .
Impact of innervation and exercise on muscle regeneration in neovascularized muscle
grafts in rats.
Ann Anat.
2002;
184
(2)
189-197
65
Giunta RE, Machens HG.
Zur aktuellen Situation von Wissenschaft und Forschung der Plastischen Chirurgie in
Deutschland.
.
2009;
41
(6)
359-363
Korrespondenzadresse
Dr. Justus Patrick Beier
Universitätsklinikum Erlangen
Plastisch- und Handchirurgische
Klinik
Krankenhausstraße 12
91054 Erlangen
Email: Justus.Beier@uk-erlangen.de