RSS-Feed abonnieren
DOI: 10.1055/s-0030-1261888
© Georg Thieme Verlag KG Stuttgart · New York
Tissue Engineering von Skelettmuskelgewebe – Stand und Perspektiven
Skeletal Muscle Tissue Engineering – Current Concepts and Future PerspectivesPublikationsverlauf
eingereicht 8.12.2009
akzeptiert 2.6.2010
Publikationsdatum:
11. August 2010 (online)

Zusammenfassung
Besonders im Bereich des funktionellen Muskelersatzes wie er beispielsweise bei Fazialislähmungen oder nach Kompartmentsyndrom verwendet wird, geht der resultierende Hebedefekt in der Regel mit einer funktionellen Einschränkung einher. Das Skelettmuskel Tissue Engineering könnte sowohl zur Einsparung des Hebedefektes als auch zu einem besseren funktionellen Ergebnis an der Empfängerstelle führen, da die Zusammensetzung des Transplantates auf seine speziellen Aufgaben abgestimmt werden könnte. Die Hindernisse, die einer klinischen Anwendung des Tissue engineerings von Skelettmuskel im Wege stehen, sind speziellen mechanischen und biologischen Anforderungen an eine geeignete dreidimensionale Matrix, die außer Biokompatibilität auch eine ausreichende Stabilität bei gleichzeitig hoher Elastizität zeigen sollte, sowie die unzureichende Differenzierung von implantierten Muskelvorläuferzellen in vivo. Die Einführung von neuartigen Materialien, wie z. B. elektrogesponnenen Nanofasern könnte durch die Möglichkeit zur genauen Anpassung der Matrixeigenschaften wie auch zur parallelen Orientierung der Fasern bald eine geeignete Matrix liefern. Die Vor- und Nachteile der Anwendung von Muskelvorläuferzellen oder mesenchymalen Stammzellen werden in diesem Artikel diskutiert. Für die stabile myogene Differenzierung in vivo stehen bisher nur wenige klinisch anwendbare Methoden zur Verfügung, jedoch gilt die Neurotisation des gezüchteten Gewebes als Differenzierungsmethode der Wahl für die spätere Transplantation als funktionellen Muskelersatz. Hier besteht noch großer Forschungsbedarf zur Etablierung eines geeigneten Modells und der Untersuchung der induzierten Differenzierung.
Abstract
Tissue engineering of skeletal muscle could have great advantages in every clinical setting in need of neurovascular muscle transfer, e. g., facial palsy or Volkmann's contracture. There are 2 great obstacles for the clinical application of engineered muscle tissue at the moment: firstly, finding a three-dimensional matrix that matches the demands concerning biocompatibility, stability and elasticity; secondly, the insufficient differentiation of implanted myoblasts, since myoblast differentiation in vivo is barely controllable and subject to a variety of influences. Furthermore axial vascularisation and neurotisation of such tissue-engineered skeletal muscle constructs play a pivotal role for any later application. An overview of the current status of skeletal muscle tissue engineering technologies and concepts for future perspective in this emerging field is presented in this article.
Schlüsselwörter
Angiogenese - Erfahrungen mit Transplantationen - Skelettmuskel - Muskelvorläuferzellen
Key words
angiogenesis - experience with transplantation - skeletal muscle - tissue engineering - myoblasts
Literatur
- 1
Pou AM.
Update on new biomaterials and their use in reconstructive surgery.
Curr Opin Otolaryngol Head Neck Surg.
2003;
11
(4)
240-244
Reference Ris Wihthout Link
- 2
Ballyns JJ, Bonassar LJ.
Image-guided tissue engineering.
J Cell Mol Med.
2009;
13
(8A)
1428-1436
Reference Ris Wihthout Link
- 3
Warnke PH. et al .
Growth and transplantation of a custom vascularised bone graft in a man.
Lancet.
2004;
364
(9436)
766-770
Reference Ris Wihthout Link
- 4
Kellouche S. et al .
Tissue engineering for full-thickness burns: a dermal substitute from bench to bedside.
Biochem Biophys Res Commun.
2007;
363
(3)
472-478
Reference Ris Wihthout Link
- 5
Vavken P, Samartzis D.
Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee:
a systematic review of controlled trials.
Osteoarthritis Cartilage.
Reference Ris Wihthout Link
- 6
Le Grand F, Rudnicki MA.
Skeletal muscle satellite cells and adult myogenesis.
Curr Opin Cell Biol.
2007;
19
(6)
628-633
Reference Ris Wihthout Link
- 7
Kuang S. et al .
Asymmetric self-renewal and commitment of satellite stem cells in muscle.
Cell.
2007;
129
(5)
999-1010
Reference Ris Wihthout Link
- 8
Weintraub H. et al .
The myoD gene family: nodal point during specification of the muscle cell lineage.
Science.
1991;
251
(4995)
761-766
Reference Ris Wihthout Link
- 9
Huang YC, Dennis RG, Baar K.
Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness
to stimulation.
Am J Physiol Cell Physiol.
2006;
291
(1)
C11-7
Reference Ris Wihthout Link
- 10
Yaffe D.
Retention of differentiation potentialities during prolonged cultivation of myogenic
cells.
Proc Natl Acad Sci U S A.
1968;
61
(2)
477-483
Reference Ris Wihthout Link
- 11
Mollmann H. et al .
Stem cell-mediated natural tissue engineering.
J Cell Mol Med.
2009;
Reference Ris Wihthout Link
- 12
Barile L. et al .
Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart.
J Cell Mol Med.
2009;
Reference Ris Wihthout Link
- 13
Roche R, Festy F, Fritel X.
Stem cells for stress urinary incontinence: the adipose promise.
J Cell Mol Med.
2009;
Reference Ris Wihthout Link
- 14
Brayfield C, Marra K, Rubin JP.
Adipose stem cells for soft tissue regeneration.
Handchir Mikrochir Plast Chir.
42
(2)
124-128
Reference Ris Wihthout Link
- 15
Lee RH. et al .
Characterization and expression analysis of mesenchymal stem cells from human bone
marrow and adipose tissue.
Cell Physiol Biochem.
2004;
14
(4-6)
311-324
Reference Ris Wihthout Link
- 16
Chen L. et al .
Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing
in mice.
PLoS One.
2009;
4
(9)
e7119
Reference Ris Wihthout Link
- 17
Satija NK. et al .
Mesenchymal Stem Cell-based Therapy: A New Paradigm in Regenerative Medicine.
J Cell Mol Med.
2009;
Reference Ris Wihthout Link
- 18
Rossignol J. et al .
Mesenchymal stem cells induce a weak immune response in the rat striatum after allo
or xenotransplantation.
J Cell Mol Med.
2009;
Reference Ris Wihthout Link
- 19
Amado LC. et al .
Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells
after myocardial infarction.
Proc Natl Acad Sci U S A.
2005;
102
(32)
11474-11479
Reference Ris Wihthout Link
- 20
Nesselmann C. et al .
Mesenchymal stem cells and cardiac repair.
J Cell Mol Med.
2008;
12
(5B)
1795-1810
Reference Ris Wihthout Link
- 21
Odorfer KI. et al .
Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial
infarction.
J Cell Mol Med.
2008;
12
(6B)
2867-2874
Reference Ris Wihthout Link
- 22
Tateishi K. et al .
Stemming heart failure with cardiac- or reprogrammed-stem cells.
J Cell Mol Med.
2008;
12
(6A)
2217-2232
Reference Ris Wihthout Link
- 23
Meirelles Lda S, Nardi NB.
Methodology, biology and clinical applications of mesenchymal stem cells.
Front Biosci.
2009;
14
4281-4298
Reference Ris Wihthout Link
- 24
Moscoso I. et al .
Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells
into cardiomyocytes for cell transplantation.
Transplant Proc.
2005;
37
(1)
481-482
Reference Ris Wihthout Link
- 25
Vandenburgh HH.
Dynamic mechanical orientation of skeletal myofibers in vitro.
Dev Biol.
1982;
93
(2)
438-443
Reference Ris Wihthout Link
- 26
Bach AD. et al .
A new approach to tissue engineering of vascularized skeletal muscle.
J Cell Mol Med.
2006;
10
(3)
716-726
Reference Ris Wihthout Link
- 27
Beier JP. et al .
Collagen matrices from sponge to nano: new perspectives for tissue engineering of
skeletal muscle.
BMC Biotechnol.
2009;
9
34
Reference Ris Wihthout Link
- 28
Kroehne V. et al .
Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation
in cell culture and in grafts.
J Cell Mol Med.
2008;
Reference Ris Wihthout Link
- 29
Srouji S. et al .
3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking
scaffold.
J Mater Sci Mater Med.
2007;
Reference Ris Wihthout Link
- 30
Arkudas A. et al .
Evaluation of blood vessel ingrowth in fibrin gel subject to type and concentration
of growth factors.
J Cell Mol Med.
2008;
Reference Ris Wihthout Link
- 31
Chew SY. et al .
The role of electrospinning in the emerging field of nanomedicine.
Curr Pharm Des.
2006;
12
(36)
4751-4770
Reference Ris Wihthout Link
- 32
Nair LS, Bhattacharyya S, Laurencin CT.
Development of novel tissue engineering scaffolds via electrospinning.
Expert Opin Biol Ther.
2004;
4
(5)
659-668
Reference Ris Wihthout Link
- 33
Greiner A, Wendorff JH.
Electrospinning: a fascinating method for the preparation of ultrathin fibers.
Angew Chem Int Ed Engl.
2007;
46
(30)
5670-5703
Reference Ris Wihthout Link
- 34
Boudriot U. et al .
Electrospinning approaches toward scaffold engineering--a brief overview.
Artif Organs.
2006;
30
(10)
785-792
Reference Ris Wihthout Link
- 35
Buttafoco L. et al .
Electrospinning of collagen and elastin for tissue engineering applications.
Biomaterials.
2006;
27
(5)
724-734
Reference Ris Wihthout Link
- 36
Su Y. et al .
Fabrication and characterization of biodegradable nanofibrous mats by mix and coaxial
electrospinning.
J Mater Sci Mater Med.
2009;
Reference Ris Wihthout Link
- 37
Padin-Iruegas ME. et al .
Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers
improve endogenous and exogenous myocardial regeneration after infarction.
Circulation.
2009;
120
(10)
876-887
Reference Ris Wihthout Link
- 38
Chakraborty S. et al .
Electrohydrodynamics: A facile technique to fabricate drug delivery systems.
Adv Drug Deliv Rev.
2009;
61
(12)
1043-1054
Reference Ris Wihthout Link
- 39
Sill TJ, von Recum HA.
Electrospinning: applications in drug delivery and tissue engineering.
Biomaterials.
2008;
29
(13)
1989-2006
Reference Ris Wihthout Link
- 40
Huber A, Pickett A, Shakesheff KM.
Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel
microfibre arrays.
Eur Cell Mater.
2007;
14
56-63
Reference Ris Wihthout Link
- 41
Venugopal J. et al .
In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous
matrices.
Cell Biol Int.
2005;
29
(10)
861-867
Reference Ris Wihthout Link
- 42
Vandenburgh HH.
Mechanical forces and their second messengers in stimulating cell growth in vitro.
Am J Physiol.
1992;
262
(3 Pt 2)
R350-R355
Reference Ris Wihthout Link
- 43
Vandenburgh HH, Karlisch P, Farr L.
Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen
gel.
In Vitro Cell Dev Biol.
1988;
24
(3)
166-174
Reference Ris Wihthout Link
- 44
Yamamoto Y. et al .
Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue
engineering technique.
J Biosci Bioeng.
2009;
108
(6)
538-543
Reference Ris Wihthout Link
- 45
Flaibani M. et al .
Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces
and exogenous electrical stimulation.
Tissue Eng Part A.
2009;
15
(9)
2447-2457
Reference Ris Wihthout Link
- 46
Stern-Straeter J. et al .
Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time
RT-PCR study.
J Cell Mol Med.
2005;
9
(4)
883-892
Reference Ris Wihthout Link
- 47
Liao IC. et al .
Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun
Fibers.
Cell Mol Bioeng.
2008;
1
(2-3)
133-145
Reference Ris Wihthout Link
- 48
Thil MA. et al .
Two-way communication for programming and measurement in a miniature implantable stimulator.
Med Biol Eng Comput.
2005;
43
(4)
528-534
Reference Ris Wihthout Link
- 49
Bleiziffer O. et al .
T17b murine embryonal endothelial progenitor cells can be induced towards both proliferation
and differentiation in a fibrin matrix.
J Cell Mol Med.
2009;
13
(5)
926-935
Reference Ris Wihthout Link
- 50
Fiegel HC. et al .
Fetal Hepatocyte Transplantation in a Vascularized AV-Loop Transplantation Model in
the Rat.
J Cell Mol Med.
2008;
Reference Ris Wihthout Link
- 51
Hutmacher DW. et al .
Translating tissue engineering technology platforms into cancer research.
J Cell Mol Med.
2009;
13
(8A)
1417-1427
Reference Ris Wihthout Link
- 52
Arkudas A. et al .
Axial prevascularization of porous matrices using an arteriovenous loop promotes survival
and differentiation of transplanted autologous osteoblasts.
Tissue Eng.
2007;
13
(7)
1549-1560
Reference Ris Wihthout Link
- 53
Arkudas A. et al .
Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV
loop model.
Mol Med.
2007;
13
(9-10)
480-487
Reference Ris Wihthout Link
- 54
Levenberg S. et al .
Engineering vascularized skeletal muscle tissue.
Nat Biotechnol.
2005;
23
(7)
879-884
Reference Ris Wihthout Link
- 55
Beier JP. et al .
De novo generation of axially vascularized tissue in a large animal model.
Microsurgery.
2009;
29
(1)
42-51
Reference Ris Wihthout Link
- 56
Beier JP. et al .
Axial vascularization of a large volume calcium phosphate ceramic bone substitute
in the sheep AV loop model.
J Tissue Eng Regen Med.
2009;
Reference Ris Wihthout Link
- 57
Eberli D. et al .
Optimization of human skeletal muscle precursor cell culture and myofiber formation
in vitro.
Methods.
2009;
47
(2)
98-103
Reference Ris Wihthout Link
- 58
Barteau B. et al .
Physicochemical parameters of non-viral vectors that govern transfection efficiency.
Curr Gene Ther.
2008;
8
(5)
313-323
Reference Ris Wihthout Link
- 59
Eisenberg I, Alexander MS, Kunkel LM.
miRNAS in normal and diseased skeletal muscle.
J Cell Mol Med.
2009;
13
(1)
2-11
Reference Ris Wihthout Link
- 60
Nakasa T. et al .
Acceleration of muscle regeneration by local injection of muscle-specific microRNAs
in rat skeletal muscle injury model.
J Cell Mol Med.
2009;
Reference Ris Wihthout Link
- 61
Nelson SF. et al .
Emerging genetic therapies to treat Duchenne muscular dystrophy.
Curr Opin Neurol.
2009;
22
(5)
532-538
Reference Ris Wihthout Link
- 62
Bach AD, Beier JP, Stark GB.
Expression of Trisk 51, agrin and nicotinic-acetycholine receptor epsilon-subunit
during muscle development in a novel three-dimensional muscle-neuronal co-culture
system.
Cell Tissue Res.
2003;
314
(2)
263-274
Reference Ris Wihthout Link
- 63
Messina A. et al .
Generation of a vascularized organoid using skeletal muscle as the inductive source.
FASEB J.
2005;
19
(11)
1570-1572
Reference Ris Wihthout Link
- 64
Noah EM. et al .
Impact of innervation and exercise on muscle regeneration in neovascularized muscle
grafts in rats.
Ann Anat.
2002;
184
(2)
189-197
Reference Ris Wihthout Link
- 65
Giunta RE, Machens HG.
Zur aktuellen Situation von Wissenschaft und Forschung der Plastischen Chirurgie in
Deutschland.
.
2009;
41
(6)
359-363
Reference Ris Wihthout Link
Korrespondenzadresse
Dr. Justus Patrick Beier
Universitätsklinikum Erlangen
Plastisch- und Handchirurgische
Klinik
Krankenhausstraße 12
91054 Erlangen
eMail: Justus.Beier@uk-erlangen.de