Abstract
Starting from pentanediol various oct-6-yne-1,5-diols were prepared.
In the presence of catalytic amounts of an Au(I) or Pt(II) catalyst
transformation to cis -2,6-tetrahydropyrans
was observed. It is assumed that this novel domino sequence proceeds
via an initial Meyer-Schuster rearrangement of the propargylic
alcohol yielding a hydroxyenone that undergoes an intramolecular
oxa-Michael addition through a chairlike transition state to the
tetrahydropyran system.
Key words
alkynes - domino reaction - gold catalysis - heterocycles - rearrangement
References and Notes
<A NAME="RB03911ST-1">1 </A> For the synthesis of a collection
of tetrahydropyrans, see:
Sanz M.
Voigt T.
Waldmann H.
Adv. Synth.
Catal.
2006,
348:
1511
<A NAME="RB03911ST-2">2 </A> Isolation and structure:
Wright AE.
Botelho JC.
Guzmán E.
Harmody D.
Linley P.
McCarthy PJ.
Pitts TP.
Pomponi SA.
Reed JK.
J.
Nat. Prod.
2007,
70:
412
For recent reviews covering total
syntheses of neopeltolide, see:
<A NAME="RB03911ST-3A">3a </A>
Gallon J.
Reymond S.
Cossy J.
C.
R. Chim.
2008,
11:
1463
<A NAME="RB03911ST-3B">3b </A>
Crane EA.
Scheidt KA.
Angew.
Chem. Int. Ed.
2010,
49:
8316
<A NAME="RB03911ST-4A">4a </A> Isolation
and structure:
Oku N.
Takada K.
Fuller RW.
Wilson JA.
Peach ML.
Pannell LK.
McMahon JB.
Gustafson KR.
J. Am. Chem. Soc.
2010,
132:
10278
<A NAME="RB03911ST-4B">4b </A> Total synthesis:
Skepper CK.
Quach T.
Molinski
TF.
J. Am. Chem. Soc.
2010,
132:
10286
<A NAME="RB03911ST-5">5 </A> Isolation and structure:
Kito K.
Ookura R.
Yoshida S.
Namikoshi M.
Ooi T.
Kusumi T.
Org. Lett.
2008,
10:
225
Total syntheses:
<A NAME="RB03911ST-6A">6a </A>
Fuwa H.
Yamaguchi H.
Sasaki M.
Org.
Lett.
2010,
12:
1848
<A NAME="RB03911ST-6B">6b </A>
Nagasawa T.
Kuwahara S.
Tetrahedron Lett.
2010,
51:
875
<A NAME="RB03911ST-6C">6c </A>
Díaz-Oltra S.
Angulo-Pachón CA.
Murga J.
Carda M.
Marco JA.
J. Org. Chem.
2010,
75:
1775
<A NAME="RB03911ST-6D">6d </A>
Sabitha G.
Vasudeva Reddy D.
Senkara Rao A.
Yadav JS.
Tetrahedron
Lett.
2010,
51:
4195
<A NAME="RB03911ST-6E">6e </A>
Fuwa H.
Yamaguchi H.
Sasaki M.
Tetrahedron
2010,
66:
7492
<A NAME="RB03911ST-6F">6f </A>
Díaz-Oltra S.
Angulo-Pachón CA.
Murga J.
Falomir E.
Carda M.
Marco
JA.
Chem.
Eur. J.
2011,
17:
675
<A NAME="RB03911ST-7">7 </A> Isolation and relative stereostructure:
Ohta S.
Uy MM.
Yanai M.
Ohta E.
Hirata T.
Ikegami S.
Tetrahedron Lett.
2006,
47:
1957
Total syntheses:
<A NAME="RB03911ST-8A">8a </A>
Kwon MS.
Woo SK.
Na SW.
Lee E.
Angew.
Chem. Int. Ed.
2008,
47:
1733
<A NAME="RB03911ST-8B">8b </A>
Fuwa H.
Sasaki M.
Org. Lett.
2010,
12:
584
<A NAME="RB03911ST-8C">8c </A>
Cook C.
Guinchard X.
Liron F.
Roulland E.
Org. Lett.
2010,
12:
744
For some reviews, see:
<A NAME="RB03911ST-9A">9a </A>
Postema MHD.
Tetrahedron
1992,
48:
8545
<A NAME="RB03911ST-9B">9b </A>
Du Y.
Linhardt RJ.
Vlahov IR.
Tetrahedron
1998,
54:
9913
<A NAME="RB03911ST-9C">9c </A>
Bililign T.
Griffith BR.
Thorson JS.
Nat. Prod. Rep.
2005,
22:
742
<A NAME="RB03911ST-9D">9d </A>
Toshima K.
Carbohydr.
Res.
2006,
341:
1282
For reviews covering the synthesis
of tetrahydropyrans, see:
<A NAME="RB03911ST-10A">10a </A>
Clarke PA.
Santos S.
Eur. J. Org.
Chem.
2006,
2045
<A NAME="RB03911ST-10B">10b </A>
Larrosa I.
Romea P.
Urpi F.
Tetrahedron
2008,
64:
2683
For representative examples, see:
<A NAME="RB03911ST-11A">11a </A>
Schneider C.
Schuffenhauer A.
Eur. J. Org. Chem.
2000,
73
<A NAME="RB03911ST-11B">11b </A>
Evans PA.
Andrews WJ.
Tetrahedron
Lett.
2005,
46:
5625
<A NAME="RB03911ST-12">12 </A>
Guérinot A.
Serra-Muns A.
Gnamm C.
Bensoussan C.
Reymond S.
Cossy J.
Org. Lett.
2010,
12:
1808
<A NAME="RB03911ST-13A">13a </A>
Aponick A.
Li C.-Y.
Biannic B.
Org. Lett.
2008,
10:
669
<A NAME="RB03911ST-13B">13b </A>
Aponick A.
Biannic B.
Org. Lett.
2011,
13:
1330
<A NAME="RB03911ST-14">14 </A>
De Brabander JK.
Liu B.
Qian M.
Org.
Lett.
2008,
10:
2533
For reviews, see:
<A NAME="RB03911ST-15A">15a </A>
Overman LE.
Pennington LD.
J.
Org. Chem.
2003,
68:
7143
<A NAME="RB03911ST-15B">15b </A>
Vasconcellos MLAA.
Miranda LSM.
Quim. Nova
2006,
29:
834
<A NAME="RB03911ST-15C">15c </A>
Pastor IM.
Yus M.
Curr. Org. Chem.
2007,
11:
925
<A NAME="RB03911ST-16">16 </A> Cross-metathesis/SN 2′ reaction:
Lee K.
Kim H.
Hong J.
Org. Lett.
2009,
11:
5202
<A NAME="RB03911ST-17">17 </A> Cross-metathesis/iodocyclization:
Hiebel M.-A.
Pelotier B.
Goekjian P.
Piva O.
Eur.
J. Org. Chem.
2008,
713
<A NAME="RB03911ST-18">18 </A> Cross-metathesis/oxa-Michael
addition:
Fuwa H.
Noto K.
Sasaki M.
Org. Lett.
2010,
12:
1636
<A NAME="RB03911ST-19">19 </A>
O’Neil GW.
Fürstner A.
Chem.
Commun.
2008,
4294
<A NAME="RB03911ST-20">20 </A>
Jung HH.
Floreancig PE.
Org. Lett.
2006,
8:
1949
<A NAME="RB03911ST-21">21 </A>
Jung HH.
Floreancig PE.
J. Org. Chem.
2007,
72:
7359
<A NAME="RB03911ST-22">22 </A>
Schwehm C.
Wohland M.
Maier ME.
Synlett
2010,
1789
<A NAME="RB03911ST-23">23 </A> For the first example of an Au(III)-catalyzed
Meyer-Schuster rearrangement of methyl propargyl ethers
to enones, see:
Fukuda Y.
Utimoto K.
Bull. Chem. Soc. Jpn.
1991,
64:
2013
For Meyer-Schuster rearrangements
of alkynols, see:
<A NAME="RB03911ST-24A">24a </A>
Engel DA.
Dudley GB.
Org.
Lett.
2006,
8:
4027
<A NAME="RB03911ST-24B">24b </A>
Egi M.
Yamaguchi Y.
Fujiwara N.
Akai S.
Org. Lett.
2008,
10:
1867
<A NAME="RB03911ST-24C">24c </A>
Stefanoni M.
Luparia M.
Porta A.
Zanoni G.
Vidari G.
Chem.
Eur. J.
2009,
15:
3940
<A NAME="RB03911ST-24D">24d </A>
Ramón RS.
Marion N.
Nolan SP.
Tetrahedron
2009,
65:
1767
<A NAME="RB03911ST-24E">24e </A>
Zanoni G.
D’Alfonso A.
Porta A.
Feliciani L.
Nolan SP.
Vidari G.
Tetrahedron
2010,
66:
7472
<A NAME="RB03911ST-24F">24f </A>
Ramón RS.
Gaillard S.
Slawin AMZ.
Porta A.
D’Alfonso A.
Zanoni G.
Nolan SP.
Organometallics
2010,
29:
3665
For reviews, see:
<A NAME="RB03911ST-25A">25a </A>
Engel DA.
Dudley GB.
Org. Biomol.
Chem.
2009,
7:
4149
<A NAME="RB03911ST-25B">25b </A>
Cadierno V.
Crochet P.
Garcia-Garrido SE.
Gimeno J.
Dalton Trans.
2010,
39:
4015
<A NAME="RB03911ST-26">26 </A>
McDougal PG.
Rico JG.
Oh YI.
Condon BD.
J. Org.
Chem.
1986,
51:
3388
<A NAME="RB03911ST-27A">27a </A>
Marshall JA.
Shearer BG.
Crooks SL.
J.
Org. Chem.
1987,
52:
1236
<A NAME="RB03911ST-27B">27b </A>
Kozikowski AP.
Shum PW.
Basu A.
Lazo JS.
J.
Med. Chem.
1991,
34:
2420
<A NAME="RB03911ST-27C">27c </A>
Moody CJ.
Sie ERHB.
Kulagowski JJ.
Tetrahedron
1992,
48:
3991
<A NAME="RB03911ST-28">28 </A>
Suffert J.
Toussaint D.
J. Org. Chem.
1995,
60:
3550
<A NAME="RB03911ST-29">29 </A> For preparation and structure of
this catalyst, see:
Preisenberger M.
Schier A.
Schmidbaur H.
J. Chem. Soc.,
Dalton Trans.
1999,
1645
<A NAME="RB03911ST-30">30 </A>
We found the use of AgO2 CCF3 (AgTFA)
for the generation of the active Au(I) catalyst to be more convenient
over AgSF6 because of its greater stability. In case
of substrate 20a , it could be shown that
the reaction to 21a works with comparable
yield with a catalyst generated from Ph3 PAuCl and AgSF6 .
<A NAME="RB03911ST-31A">31a </A>
Liu Y.
Xu W.
Wang X.
Org. Lett.
2010,
12:
1448
<A NAME="RB03911ST-31B">31b </A>
Cariou K.
Ronan B.
Mignani S.
Fensterbank L.
Malacria M.
Angew.
Chem. Int. Ed.
2007,
46:
1881
For some recent reviews of gold(I)-catalyzed
reactions of alkynes, see:
<A NAME="RB03911ST-32A">32a </A>
Hintermann L.
Labonne A.
Synthesis
2007,
1121
<A NAME="RB03911ST-32B">32b </A>
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
<A NAME="RB03911ST-32C">32c </A>
Gorin DJ.
Toste FD.
Nature
(London)
2007,
446:
395
<A NAME="RB03911ST-32D">32d </A>
Li Z.
Brouwer C.
He C.
Chem.
Rev.
2008,
108:
3239
<A NAME="RB03911ST-32E">32e </A>
Gorin DJ.
Sherry BD.
Toste FD.
Chem. Rev.
2008,
108:
3351
<A NAME="RB03911ST-32F">32f </A>
Patil NT.
Yamamoto Y.
Chem. Rev.
2008,
108:
3395
<A NAME="RB03911ST-32G">32g </A>
Fürstner A.
Chem. Soc. Rev.
2009,
38:
3208
<A NAME="RB03911ST-32H">32h </A>
Abu Sohel SM.
Liu R.-S.
Chem.
Soc. Rev.
2009,
38:
2269
<A NAME="RB03911ST-32I">32i </A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2010,
49:
5232
<A NAME="RB03911ST-32J">32j </A>
Corma A.
Leyva-Peréz A.
Sabater MJ.
Chem. Rev.
2011,
111:
1657