Synthesis 2011(16): 2671-2683  
DOI: 10.1055/s-0030-1260115
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Limno-CP: A Natural-Product-Inspired 5-Aryl-3(2H)-furanone as Scaffold for a Library of α-Modified Enones

Sabine Amslinger*, Simon K. Lindner
Universität Regensburg, Institut für Organische Chemie, Universitätstr. 31, 93053 Regensburg, Germany
Fax: +49(941)9434121; e-Mail: sabine.amslinger@chemie.uni-regensburg.de;
Weitere Informationen

Publikationsverlauf

Received 29 April 2011
Publikationsdatum:
14. Juli 2011 (online)

Abstract

A library of 5-aryl-3(2H)-furanones that are modified in the α-position of the α,β-unsaturated carbonyl system was prepared via simple one- to three-step transformations from one common scaffold. The ¹³C NMR characterization of the enone system showed a strong influence of the α-substituents, especially on the shifts of the α- and β-carbon atoms. Probing the addition chemistry of nucleophiles versus our α-modified enones, a 1,2-addition-elimination­ was found, but no 1,4-addition.

    References

  • 1 Jerris PJ. Smith AB. J. Org. Chem.  1981,  46:  577 
  • 2 Le Quesne PW. Levery SB. Menachery MD. Brennan TF. Raffauf RF. J. Chem. Soc., Perkin Trans. 1  1978,  1572 
  • 3 Kupchan SM. Sigel CW. Matz MJ. Gilmore CJ. Bryan RF. J. Am. Chem. Soc.  1976,  98:  2295 
  • 4 Ishikawa M. Ninomiya T. Akabane H. Kushida N. Tsujiuchi G. Ohyama M. Gomi S. Shito K. Murata T. Bioorg. Med. Chem. Lett.  2009,  19:  1457 
  • 5 For an overview about 3(2H)-furanones, see: Haug TT. Kirsch SF. In Targets in Heterocyclic Systems   Vol. 13:  Attanasi OA. Spinelli D. Royal Society of Chemistry; London: 2009.  p.57 
  • 6 Amslinger S. ChemMedChem  2010,  5:  351 
  • 7 Lawrence NJ. Patterson RP. Ooi L.-L. Cook D. Ducki S. Bioorg. Med. Chem. Lett.  2006,  16:  5844 
  • 8 Blum G. Gazit A. Levitzki A. Biochemistry  2000,  39:  15705 
  • 9 Honda T. Gribble GW. Suh N. Finlay HJ. Rounds BV. Bore L. Favaloro FG. Wang Y. Sporn MB. J. Med. Chem.  2000,  43:  1866 
  • 10a Honda T. Rounds BV. Bore L. Finlay HJ. Favaloro FG. Suh N. Wang YP. Sporn MB. Gribble GW. J. Med. Chem.  2000,  43:  4233 
  • 10b Honda T. Honda Y. Favaloro FG. Gribble GW. Suh N. Place AE. Rendi MH. Sporn MB. Bioorg. Med. Chem. Lett.  2002,  12:  1027 
  • 10c Dinkova-Kostova AT. Liby KT. Stephenson KK. Holtzclaw WD. Gao XQ. Suh N. Williarrli C. Risingsong R. Honda T. Gribble GW. Sporn MB. Talalay P. Proc. Natl. Acad. Sci. U.S.A.  2005,  102:  4584 
  • 10d Wang S.-J. Yan J.-F. Hao D. Niu X.-W. Cheng M.-S. Molecules  2007,  12:  885 
  • 10e Wang J. Wang S. Song D. Zhao D. Sha Y. Jiang Y. Jing Y. Cheng M. Chem. Biol. Drug Des.  2009,  73:  511 
  • 10f Levitzki A. Gazit A. Science  1995,  267:  1782 
  • 10g Levitzki A. Mishani E. Annu. Rev. Biochem.  2006,  75:  93 
  • 11 Dinkova-Kostova AT. Talalay P. Mol. Nutr. Food Res.  2008,  52:  S128 
  • 12 Jang DS. Su BN. Pawlus AD. Jones WP. Kleps RA. Bunyapraphatsara N. Fong HHS. Pezzuto JM. Kinghorn AD. J. Nat. Prod.  2005,  68:  1134 
  • 13 Shao X. Dolder M. Tamm C. Helv. Chim. Acta  1990,  73:  483 
  • 14 Smith AB. Levenberg PA. Jerris PJ. Scarborough RM. Wovkulich PM. J. Am. Chem. Soc.  1981,  103:  1501 
  • 15 Casnati G. Quilico A. Ricca A. Finzi PV. Tetrahedron Lett.  1966,  7:  233 
  • 16a Sher F. Isidor JL. Taneja HR. Carlson RM. Tetrahedron Lett.  1973,  14:  577 
  • 16b Kato K. Nouchi H. Ishikura K. Takaishi S. Motodate S. Tanaka H. Okudaira K. Mochida T. Nishigaki R. Shigenobu K. Akita H. Tetrahedron  2006,  62:  2545 
  • 16c Kirsch SF. Binder JT. Liébert C. Menz H. Angew. Chem. Int. Ed.  2006,  45:  5878 
  • 16d Bunnelle EM. Smith CR. Lee SK. Singaram SW. Rhodes AJ. Sarpong R. Tetrahedron  2008,  64:  7008 
  • 16e Egi M. Azechi K. Saneto M. Shimizu K. Akai S. J. Org. Chem.  2010,  75:  2123 
  • 18 Shin SS. Byun Y. Lim KM. Choi JK. Lee K.-W. Moh JH. Kim JK. Jeong YS. Kim JY. Choi YH. Koh H.-J. Park Y.-H. Oh YI. Noh M .-S. Chung S.
    J. Med. Chem.  2004,  47:  792 
  • 19 Solladié G. Pasturel-Jacopé Y. Maignan J. Tetrahedron  2003,  59:  3315 
  • 20 Parker W. Raphael RA. Wilkinson DI. J. Chem. Soc.  1958,  3871 
  • A corresponding enamine intermediate could be isolated from the cyclization of a very similar starting material with Et2NH in THF-H2O (9:1) in high yield. Mechanisms via 1,3-diketones, which involve a simple hydration of the triple bond typically require acids or mercury salts; see:
  • 21a Williams DR. Abbaspour A. Jacobson RM. Tetrahedron Lett.  1981,  22:  3565 
  • 21b Saimoto H. Shinoda M. Matsubara S. Oshima K. Hiyama T. Nozaki H. Bull. Chem. Soc. Jpn.  1983,  56:  3088 
  • For the addition of CO2 via the formation of a 1,3-dioxolan-2-one to the 1,3-diketone, see:
  • 21c Inoue Y. Ohuchi K. Imaizumi S. Tetrahedron Lett.  1988,  29:  5941 
  • 21d Kawaguchi T. Yasuta S. Inoue Y. Synthesis  1996,  1431 
  • 22 Ripka A, Shapiro G, and Chesworth R. inventors; PCT Int. Appl. WO 2009158393  A1.  ; Chem. Abstr. 2009, 152, 87491
  • 23 Crone B. Kirsch SF. J. Org. Chem.  2007,  72:  5435 
  • 24 Chao ST, and Varma RK. inventors; US Patent  4243586.  ; Chem. Abstr. 1981, 95, 98152
  • 25a Leanza WJ. Conbere JP. Rogers EF. Pfister K.
    J. Am. Chem. Soc.  1954,  76:  1691 
  • 25b You Z. Heiman AS. Chen M. Lee HJ. Steroids  2000,  65:  109 
  • 26 Paleta O. Pelter A. Kebrle J. Duda Z. Hajduch J. Tetrahedron  2000,  56:  3197 
  • 27 Trofimov BA. Shemyakina OA. Mal’kina AG. Ushakov IA. Kazheva ON. Alexandrov GG. Dyachenko OA. Org. Lett.  2010,  12:  3200 
  • 28 McNab H. Monahan LC. J. Chem. Soc., Perkin Trans. 1  1989,  419 
  • 29 Paquette LA. Liu Z. Ramsey C. Gallucci JC. J. Org. Chem.  2005,  70:  8154 
  • 30 Soorukram D. Knochel P. Org. Lett.  2007,  9:  1021 
  • 31 Paleta O. Duda Z. Hol A. Mendeleev Commun.  2001,  11:  17 
  • 32 Nyffeler PT. Durón SG. Burkart MD. Vincent SP. Wong C.-H. Angew. Chem. Int. Ed.  2004,  44:  192 
  • 33 Arvela RK. Leadbeater NE. J. Org. Chem.  2003,  68:  9122 
  • 34 Butora G. Jiao R. Parsons WH. Vicario PP. Jin H. Ayala JM. Cascieri MA. Yang L. Bioorg. Med. Chem. Lett.  2007,  17:  3636 
  • 35 Mull ES. Sattigeri VJ. Rodriguez AL. Katzenellenbogen JA. Bioorg. Med. Chem.  2002,  10:  1381 
  • 36 Takeda K. Kawanishi E. Nakamura H. Yoshii E. Tetrahedron Lett.  1991,  32:  4925 
  • 37 Costa AMBSRCS. Dean FM. Jones MA. Varma RS. J. Chem. Soc., Perkin Trans. 1  1985,  799 
  • 38 Shipe WD. Sorensen EJ. Org. Lett.  2002,  4:  2063 
  • 39a Lin W. Chen L. Knochel P. Tetrahedron  2007,  63:  2787 
  • 39b Thibonnet J. Anh Vu V. Bérillon L. Knochel P. Tetrahedron  2002,  58:  4787 
  • 40 Wang X.-j. Sun X. Zhang L. Xu Y. Krishnamurthy D. Senanayake CH. Org. Lett.  2005,  8:  305 
  • 41 The ratios were determined by 2D NMR techniques including ROESY. The chemical shifts of vinylic protons in 7 (see assignments in Figure 3) of α-Cl products 31a, 31b were assigned by comparison with 26a, 26b, 30a, 30b, 32a, 32b, and the literature, see: Botta D. Mantica E. Castellani L. Dotelli G. Zetta L. Magn. Reson. Chem.  1998,  36:  885 
  • 42 Smith AB. Jerris PJ. Synth. Commun.  1978,  8:  421 
  • 43 Schmidt TJ. Bioorg. Med. Chem.  1997,  5:  645 
17

For the acid-induced cyclization of 4-hydroxy-1,3-diketones no spirocyclic compound is reported. Examples for monocyclic compounds are given in Ref. 1.