Abstract
An atom-economical synthesis of 2-aminoimidazoles catalyzed by
a titanacarborane monoamide is reported. Reactions of propargylamines
with carbodiimides, in the presence of 5 mol% [σ:η
¹ :η
5 -(OCH2 )(Me2 NCH2 )C2 B9 H9 ]Ti(NMe2 ),
afford a new class of substituted 2-aminoimidazoles via [3+2] annulation
in good to excellent yields. A possible reaction mechanism is proposed.
Key words
catalysis - heterocycles - hydroamination - imidazole - metallacarborane
References and Notes
For selected examples, see:
<A NAME="RW33210ST-1A">1a </A>
Fujita M.
Nakao Y.
Matsunaga S.
Seiki M.
Itoh Y.
Yamashita J.
van Soest RWM.
Fusetani N.
J. Am. Chem. Soc.
2003,
125:
15700
<A NAME="RW33210ST-1B">1b </A>
Kobayashi J.
Tsuda M.
Murayama T.
Nakamura H.
Ohizumi Y.
Ishibashi M.
Iwamura M.
Ohta T.
Nozoe S.
Tetrahedron
1990,
46:
5579
<A NAME="RW33210ST-1C">1c </A>
Alvi KA.
Crews P.
Loughhead DG.
J. Nat. Prod.
1991,
54:
1509
<A NAME="RW33210ST-1D">1d </A>
Capon RJ.
Rooney F.
Murray LM.
Collins E.
Sim ATR.
Rostas JAP.
Butler MS.
Carroll AR.
J. Nat. Prod.
1998,
61:
660
<A NAME="RW33210ST-1E">1e </A>
Cutignano A.
Bifulco G.
Bruno I.
Casapullo A.
Gomez-Paloma L.
Riccio R.
Tetrahedron
2000,
56:
3743
<A NAME="RW33210ST-1F">1f </A>
Ahond A.
Bedoya-Zurita M.
Colin M.
Fizames C.
Laboute P.
Lavelle F.
Laurent D.
Poupat C.
Pusset J.
Pusset M.
Thoison O.
Potier P.
C. R. Acad. Sci.,
Ser. II
1988,
307:
145
<A NAME="RW33210ST-1G">1g </A>
Picman AK.
Arnason JT.
Lambert JDH.
J. Nat. Prod.
1986,
49:
556
<A NAME="RW33210ST-1H">1h </A>
Tsukamoto S.
Kato H.
Hirota H.
Fusetani N.
J. Nat. Prod.
1996,
59:
501
<A NAME="RW33210ST-1I">1i </A>
Carmely S.
Kashman Y.
Tetrahedron Lett.
1987,
28:
3003
<A NAME="RW33210ST-1J">1j </A>
Carmely S.
Ilan M.
Kashman Y.
Tetrahedron
1989,
45:
2193
<A NAME="RW33210ST-1K">1k </A>
Walker RP.
Faulkner DJ.
Van
Engen D.
Clardy J.
J.
Am. Chem. Soc.
1981,
103:
6772
<A NAME="RW33210ST-1L">1l </A>
Albizati KF.
Faulkner DJ.
J.
Org. Chem.
1985,
50:
4163
For selected reviews of synthesis
and activity of 2-aminoimidazole alkaloids, see:
<A NAME="RW33210ST-2A">2a </A>
Weinreb SM.
Nat. Prod. Rep.
2007,
24:
931
<A NAME="RW33210ST-2B">2b </A>
Hoffmann H.
Lindel T.
Synthesis
2003,
1753
<A NAME="RW33210ST-2C">2c </A>
Sullivan JD.
Giles RL.
Looper RE.
Curr. Bioact. Compd.
2009,
5:
39
<A NAME="RW33210ST-3A">3a </A>
Norris TO.
McKee RL.
J. Am. Chem. Soc.
1954,
77:
1056
<A NAME="RW33210ST-3B">3b </A>
Lawson A.
J.
Chem. Soc.
1956,
307
<A NAME="RW33210ST-3C">3c </A>
Kreutzberger A.
J.
Org. Chem.
1962,
27:
886
<A NAME="RW33210ST-3D">3d </A>
Lancini GC.
Lazzari E.
J. Antibiot.
1966,
3:
152
<A NAME="RW33210ST-3E">3e </A>
Lancini GC.
Lazzari E.
Arioli V.
Bellani P.
J. Med. Chem.
1969,
12:
775
<A NAME="RW33210ST-3F">3f </A>
Little TL.
Webber SE.
J.
Org. Chem.
2004,
69:
7299
<A NAME="RW33210ST-3G">3g </A>
Nishimura T.
Kitajima K.
J. Org. Chem.
1979,
44:
818
<A NAME="RW33210ST-3H">3h </A>
Ryckmans T.
Schulte K.
Viehe H.-G.
Bull.
Soc. Chim. Belg.
1997,
106:
553
<A NAME="RW33210ST-3I">3i </A>
Thangavel N.
Murgesh K.
Asian J. Chem.
2005,
17:
2769
<A NAME="RW33210ST-3J">3j </A>
Casagrande C.
Ferrini R.
Miragoli G.
Ferrari G.
Farmaco, Ed. Sci.
1972,
27:
715
<A NAME="RW33210ST-4A">4a </A>
Hassner A.
Munger P.
Belinka BA.
Tetrahedron Lett.
1982,
23:
699
<A NAME="RW33210ST-4B">4b </A>
Daninos S.
Al Mourabit A.
Ahond A.
Zurita MB.
Poupat C.
Potier P.
Bull. Soc. Chim. Fr.
1994,
131:
590
<A NAME="RW33210ST-4C">4c </A>
Danios-Zegal S.
Mourabit AA.
Ahond A.
Poupat C.
Potier P.
Tetrahedron
1997,
53:
7605
<A NAME="RW33210ST-4D">4d </A>
Jarosinski MA.
Anderson KA.
J.
Org. Chem.
1991,
56:
4058
<A NAME="RW33210ST-4E">4e </A>
Meketa ML.
Weinreb SM.
Org.
Lett.
2006,
8:
1443
<A NAME="RW33210ST-5">5 </A>
Giles RL.
Sullivan JD.
Steiner AM.
Looper RE.
Angew.
Chem. Int. Ed.
2009,
48:
3116
<A NAME="RW33210ST-6">6 </A>
Ermolat’ev DS.
Bariwal JB.
Steenackers HPL.
De Keersmaecher SCJ.
Van der Eycken EV.
Angew. Chem. Int. Ed.
2010,
49:
9465
<A NAME="RW33210ST-7A">7a </A>
Shen H.
Chan H.-S.
Xie Z.
Organometallics
2007,
26:
2694
<A NAME="RW33210ST-7B">7b </A>
Shen H.
Xie Z.
J. Organomet. Chem.
2009,
694:
1652
<A NAME="RW33210ST-8">8 </A>
Shen H.
Chan H.-S.
Xie Z.
Organometallics
2006,
25:
5515
<A NAME="RW33210ST-9">9 </A>
Shen H.
Xie Z.
J. Am. Chem. Soc.
2010,
132:
11473
<A NAME="RW33210ST-10">10 </A>
Shen H.
Chan H.-S.
Xie Z.
Organometallics
2008,
26:
2685
For examples, see:
<A NAME="RW33210ST-11A">11a </A>
Ong T.-G.
O’Brien JS.
Korobkov I.
Richeson DS.
Organometallics
2006,
25:
4728
<A NAME="RW33210ST-11B">11b </A>
Kubiak R.
Prochnow I.
Doye S.
Angew.
Chem. Int. Ed.
2009,
48:
1153
<A NAME="RW33210ST-11C">11c </A>
Bexrud JA.
Beard JD.
Leitch DC.
Schafer LL.
Org.
Lett.
2005,
7:
1959
<A NAME="RW33210ST-11D">11d </A>
Walsh
PJ.
Baranger AM.
Bergman RG.
J. Am. Chem. Soc.
1992,
114:
1708
<A NAME="RW33210ST-11E">11e </A>
Pohlki F.
Doye S.
Chem. Soc. Rev.
2003,
32:
104
<A NAME="RW33210ST-12">12 </A>
Some reactions were complete within
18 h, although the reaction of 2a and 3a was finished in 8 h.
<A NAME="RW33210ST-13">13 </A>
Typical procedure for a preparative
scale reaction of 2 with 3 :
A 50-mL Schlenk bottle was charged with a toluene solution (20 mL)
of catalyst 1 (0.05 mmol), to which was added 2 (1.0 mmol) and 3 (1.0
mmol). The flask was closed in order to prevent the evaporation
of amine. The reaction mixture was then heated at 115 ˚C
for 18 h. After removal of the solvent, the residue was
subject to flash column chromatographic separation on silica gel
(230-400 mesh) to give 4 .
<A NAME="RW33210ST-14">14 </A>
CCDC-803540 contains the supplementary
crystallographic data of 4aa for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RW33210ST-15">15 </A> The conversion of guanidinoalkynes
into imidazoles without the assistance of a metal catalyst has been
reported, see:
Oyler AR.
Naldi RE.
Stefanick SM.
Lloyd JR.
Graden DA.
Cotter ML.
J.
Pharm. Sci.
1989,
78:
21