References and Notes
<A NAME="RG33910ST-1A">1a</A>
Larock RC. In Acetylene
Chemistry
Diederich F.
Stang PJ.
Tykwinski RR.
Wiley-VCH;
Weinheim:
2005.
p.51-99
<A NAME="RG33910ST-1B">1b</A>
Mehta S.
Larock RC.
J. Org.
Chem.
2010,
75:
1652 ;
and references cited therein
<A NAME="RG33910ST-1C">1c</A>
Manarin F.
Roehrs JA.
Brandão R.
Nogueira
CW.
Zeni G.
Synthesis
2009,
4001
<A NAME="RG33910ST-1D">1d</A>
Cho C.-H.
Neuenswander B.
Larock RC.
J.
Comb. Chem.
2010,
12:
278
<A NAME="RG33910ST-1E">1e</A>
Worlikar SA.
Neuenswander B.
Lushington
GH.
Larock RC.
J.
Comb. Chem.
2009,
11:
875
<A NAME="RG33910ST-1F">1f</A>
Cho C.-H.
Neuenswander B.
Lushington GH.
Larock RC.
J.
Comb. Chem.
2009,
11:
900
<A NAME="RG33910ST-1G">1g</A>
Manarin F.
Roehrs
JA.
Gay RM.
Brandao R.
Menezes PH.
Nogueira
CW.
Zeni G.
J. Org. Chem.
2009,
74:
2153
<A NAME="RG33910ST-1H">1h</A>
Mehta S.
Waldo JP.
Larock RC.
J. Org. Chem.
2009,
74:
1141
<A NAME="RG33910ST-1I">1i</A>
Cho C.-H.
Neuenswander B.
Lushington GH.
Larock RC.
J.
Comb. Chem.
2008,
10:
941
<A NAME="RG33910ST-2A">2a</A>
Yue D.
Larock RC.
J.
Org. Chem.
2002,
67:
1905
<A NAME="RG33910ST-2B">2b</A>
Flynn BL.
Verdier-Pinard P.
Hamel E.
Org. Lett.
2001,
3:
651
<A NAME="RG33910ST-2C">2c</A>
Yue D.
Larock RC.
Tetrahedron Lett.
2001,
42:
6011
<A NAME="RG33910ST-3A">3a</A>
Arcadi A.
Cacchi S.
Fabrizi G.
Marinelli F.
Moro L.
Synlett
1999,
1432
<A NAME="RG33910ST-3B">3b</A>
Yue D.
Yao T.
Larock RC.
J.
Org. Chem.
2005,
70:
10292
<A NAME="RG33910ST-3C">3c</A>
Okitsu T.
Nakazawa D.
Taniguchi R.
Wada A.
Org. Lett.
2008,
10:
4967
<A NAME="RG33910ST-4A">4a</A>
Barluenga J.
Trincado M.
Rubio E.
Gonzalez JM.
Angew.
Chem. Int. Ed.
2003,
42:
2406
<A NAME="RG33910ST-4B">4b</A>
Amjad M.
Knight DW.
Tetrahedron Lett.
2004,
45:
539
<A NAME="RG33910ST-4C">4c</A>
Yue D.
Larock RC.
Org. Lett.
2004,
6:
1037
<A NAME="RG33910ST-4D">4d</A>
Yue D.
Yao T.
Larock RC.
J.
Org. Chem.
2006,
71:
62
<A NAME="RG33910ST-5A">5a</A>
Wei S.
Coleman RS.
Lowary TL.
Org. Biomol. Chem.
2009,
7:
3709
<A NAME="RG33910ST-5B">5b</A>
Santin EP.
Khanwalkar H.
Voegel J.
Collette P.
Mauvais P.
Gronemeye H.
de Lera AR.
ChemMedChem
2009,
4:
780
<A NAME="RG33910ST-5C">5c</A>
Yang
L.-Y.
Chang C.-F.
Huang Y.-C.
Lee Y.-J.
Hu C.-C.
Tseng T.-H.
Synthesis
2009,
1175
<A NAME="RG33910ST-5D">5d</A>
Bang HB.
Han
SY.
Choi DH.
Yang DM.
Hwang JW.
Lee HS.
Jun J.-G.
Synth. Commun.
2009,
39:
506
<A NAME="RG33910ST-6A">6a</A>
Zhou Y.
Liu W.-J.
Ma Y.
Wang H.
Qi L.
Cao Y.
Wang J.
Pei J.
J. Am. Chem. Soc.
2007,
129:
12386
<A NAME="RG33910ST-6B">6b</A>
Kobayashi T, and
Hasegawa Y. inventors; US 2005258398.
<A NAME="RG33910ST-7">7</A>
Barluenga J.
Trincado M.
Rubio E.
Gonzalez JM.
Angew. Chem. Int.
Ed.
2003,
42:
2406
<A NAME="RG33910ST-8A">8a</A>
Vinogradova OV.
Sorokoumov VN.
Vasylevsky
SF.
Balova IA.
Tetrahedron
Lett.
2007,
48:
4907
<A NAME="RG33910ST-8B">8b</A>
Vinogradova OV.
Sorokoumov VN.
Balova IA.
Tetrahedron Lett.
2009,
50:
6358
<A NAME="RG33910ST-9A">9a</A>
Sahu B.
Namboothiri INN.
Persky R.
Tetrahedron Lett.
2005,
46:
2593
<A NAME="RG33910ST-9B">9b</A>
Sahu B.
Muruganantham R.
Namboothiri INN.
Eur. J. Org. Chem.
2007,
2477
<A NAME="RG33910ST-10A">10a</A>
Kim C.-S.
Russell KC.
J.
Org. Chem.
1998,
63:
8229
<A NAME="RG33910ST-10B">10b</A>
Kumarasinghe ES.
Peterson MA.
Robins MJ.
Tetrahedron Lett.
2000,
41:
8741
For recent reviews, see:
<A NAME="RG33910ST-11A">11a</A>
Jones GB.
Fouad FS.
Curr. Pharm.
Des.
2002,
8:
2415
<A NAME="RG33910ST-11B">11b</A>
Maretina IA.
Trofimov BA.
Russ.
Chem. Rev.
2006,
75:
825
<A NAME="RG33910ST-11C">11c</A>
Shao R.-G.
Curr. Mol.
Pharm.
2008,
1:
50
<A NAME="RG33910ST-12A">12a</A>
Fiandanese V.
Bottalico D.
Marchese G.
Punzi A.
Tetrahedron
2008,
64:
53
<A NAME="RG33910ST-12B">12b</A>
Fiandanese V.
Bottalico D.
Marchese G.
Punzi A.
Tetrahedron
2008,
64:
7301
<A NAME="RG33910ST-13A">13a</A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
<A NAME="RG33910ST-13B">13b</A>
Balova IA.
Sorokoumov VN.
Morozkina SN.
Vinogradova OV.
Knight DW.
Vasilevsky SF.
Eur. J. Org. Chem.
2005,
882
<A NAME="RG33910ST-13C">13c</A>
Liang Y.
Tao L.-M.
Zhang Y.-H.
Li J.-H.
Synthesis
2008,
3988
<A NAME="RG33910ST-14">14</A>
Relative molar ratio of 2d and 2d′ was
determined by
¹H NMR analysis of the
integral intensity of the signals of acetylene hydrogen atom (δ = 3.74
ppm) of 2d′, TMS group (δ = 0.32
ppm) of 2d and multiplet signals of aromatic hydrogen
atoms (δ = 7.38-7.50 and 7.67-7.76
ppm) of 2d and 2d′ (CDCl3,
400 MHz, TMS as reference).
<A NAME="RG33910ST-15A">15a</A>
Sooloki D.
Kennedy VO.
Tessier CA.
Youngs
WJ.
Synlett
1990,
427
<A NAME="RG33910ST-15B">15b</A>
Sooloki D.
Bradshaw JD.
Tessier CA.
Youngs WJ.
Organometallics
1994,
13:
451
<A NAME="RG33910ST-16">16</A>
It was determined by TLC that O-benzyl-2-(dodeca-1,3-diynyl)phenol
reacts with ICl in MeCN in similar way giving benzofuran 3i with iodochlorinated triple bond.
<A NAME="RG33910ST-17">17</A>
Ebata H.
Miyazaki E.
Yamamoto T.
Takimiya K.
Org. Lett.
2007,
9:
4499
<A NAME="RG33910ST-18A">18a</A>
Barluenga J.
Fananas-Mastral M.
Andina F.
Aznar F.
Valdes C.
Organometallics
2008,
27:
3593
<A NAME="RG33910ST-18B">18b</A>
Kitagaki S.
Katoh K.
Ohdachi K.
Takahashi Y.
Shibata D.
Mukai C.
J. Org. Chem.
2006,
71:
6908
<A NAME="RG33910ST-18C">18c</A>
Shvartsberg MS.
Vasilevskii SF.
Prihod’ko TA.
Izv. Acad.
Nauk SSSR, Ser. Khim.
1982,
11:
2524
<A NAME="RG33910ST-19">19</A>
General Procedure
for Electrophilic Cyclization of
ortho
-Buta-1,3-diynylthiophenol, -Aniline, and -Phenol Derivatives
Using I
2
To
an Ar flushed solution of corresponding o-(buta-1,3-diynyl)arene 1 (0.2 mmol) in MeCN (3 mL), a solution
of iodine (0.2 mmol, 0.051 g,) in MeCN (2 mL) was added dropwise.
The reaction mixture was stirred at corresponding temperature up
to disappearance of starting material according to TLC monitoring
(see Table
[¹]
).
Then, the reaction mixture was diluted with 5% aq solution
of Na2S2O3 and extracted with CH2Cl2 (3 × 7
mL). The combined organic layers were washed with H2O,
dried over anhyd Na2SO4, and concentrated
under reduced pressure to yield the crude product, which was purified
by column chromatography on silica gel using pentane (for 2a,b,d,e,g) or cyclohexane-EtOAc (2c,f) as the eluent.
<A NAME="RG33910ST-20">20</A>
Selected Data
for 2c
Mp 73-75 ˚C. IR
(neat): ν = 3124 (OH), 2927
(CH), 2222 (CºC), 1449, 1427, 1370, 1326, 1294, 1243, 1192, 1158, 1062,
1031, 1016, 983, 938, 914, 849, 831, 747, 721, 707 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.01
(t, J = 6.5
Hz, 1 H), 2.83 (t, J = 6.1
Hz, 2 H), 3.88-3.93 (m, 2 H), 7.38-7.46 (m, 2
H), 7.67-7.72 (m, 2 H). ¹³C
NMR (100 MHz, CDCl3): δ = 24.4,
60.8, 87.6, 96.9, 122.1, 125.0, 125.7, 126.1, 126.4, 138.6, 140.3
(two signals are overlapping with each other). MS (EI, 70 eV): m/z (%) = 328.0(100) [M]+,
296.9 (66)
[M - CH2OH]+,
171.0(31), 139.1 (5) 126.1 (14). HRMS:
m/z calcd
for C12H9OSI: 327.9419. Found: 327.9418. Anal. Calcd
for C12H9OSI: C, 43.92; H, 2.76; S, 9.77.
Found: C, 43.85; H, 2.69; S, 9.61.
<A NAME="RG33910ST-21">21</A>
General Procedure
for the Synthesis of Enediyne Systems 4
To a stirred
solution of 2-ethynyl-3-iodo heterocyle 2 (0.1 mmol)
in DMF (2 mL), the alkyne (0.2 mmol), Pd(PPh3)4 (5 mol%),
Ph3P (10 mol%), and DIPA (0.4 mmol) were added. The
reaction vial was evacuated and flushed with Ar several times. After
that 15 mol% of CuI was added, the reaction vial was then
sealed and flushed with Ar. The reaction mixture was allowed to
stir at 40-50 ˚C (see Table
[²]
) overnight. After cooling,
the reaction mixture was poured into the sat. aq solution of NH4Cl
and extracted with CH2Cl2 (3 × 10 mL).
The combined organic layers were washed two times with H2O,
dried over anhyd Na2SO4, and concentrated
under reduced pressure to yield the crude product, which was purified
by column chromatography on silica gel using pentane (for 4a,c,d,h,i) or cyclohexane-EtOAc (for 4b,e-g) as the eluent.
<A NAME="RG33910ST-22">22</A>
Selected Data
for 4f
IR (film on KBr): ν = 3358
(OH), 3061 (CH), 2958 (CH), 2897 (CH), 2223 (CºC), 2149 (CºC), 1458,
1433, 1349, 1317, 1249, 1216, 1160, 1081, 1046, 976, 938, 896, 843, 729,
687, 642 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.32 (s,
9 H), 2.02 (t, J = 6.7
Hz, 1 H), 2.83 (t, J = 6.1
Hz, 2 H), 3.85-3.90 (m, 2 H), 7.38-7.45 (m, 2
H), 7.70-7.72 (m, 1 H), 7.83-7.85 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 0.1, 24.5,
60.8, 75.8, 97.5, 97.7, 101.5, 122.0, 122.8, 123.3, 125.1, 126.1,
127.3, 138.0, 138.5. MS-FAB: m/z (%) = 299.1
(61) [M+ + H], 298.1
(100) [M+]. HRMS:
m/z calcd for C17H18OSSi:
298.0848; found: 298.0845.