Abstract
An efficient copper-catalyzed method has been developed for Sonogashira
couplings of aryl halides with terminal alkynes in water. The protocol
uses inexpensive CuBr as the catalyst, 1,10-phenanthroline as the
ligand, tetrabutylammonium bromide (TBAB) as the phase-transfer
catalyst, environmentally friendly water as the solvent, and various
internal alkynes were synthesized in good to excellent yields.
Key words
copper - water - Sonogashira coupling - synthetic
method - alkyne
References and Notes <A NAME="RW18410ST-1">1 </A>
These two authors contributed equally
to this work.
<A NAME="RW18410ST-2">2 </A>
Beutler U.
Mazacek J.
Penn G.
Schenkel B.
Wasmuth D.
Chimia
1996,
50:
154
<A NAME="RW18410ST-3">3 </A>
Grissom JW.
Gunawardena GU.
Klingenberg D.
Huang D.
Tetrahedron
1996,
52:
6453
<A NAME="RW18410ST-4A">4a </A>
Anastasia L.
Negishi E.
Org.
Lett.
2001,
3:
3111
<A NAME="RW18410ST-4B">4b </A>
Yang C.
Nolan SP.
Organometallics
2002,
21:
1020
<A NAME="RW18410ST-4C">4c </A>
Plenio H.
Hermann J.
Sehring A.
Chem.
Eur. J.
2000,
6:
1820
<A NAME="RW18410ST-4D">4d </A>
Alami M.
Crousse B.
Ferri F.
J.
Organomet. Chem.
2001,
624:
114
<A NAME="RW18410ST-4E">4e </A>
Batey RA.
Shen M.
Lough AJ.
Org. Lett.
2002,
4:
141
<A NAME="RW18410ST-5A">5a </A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
<A NAME="RW18410ST-5B">5b </A>
Champbell IB. In
Organocopper Reagent:
A Practical Approach
Taylor RJK.
Oxford University Press;
Oxford:
1994.
p.217
<A NAME="RW18410ST-6">6 </A>
Chinchilla R.
Njera C.
Chem. Rev.
2007,
107:
874
<A NAME="RW18410ST-7A">7a </A>
Okuro K.
Furuune M.
Enna M.
Miura M.
Nomura M.
J. Org. Chem.
1993,
58:
4716
<A NAME="RW18410ST-7B">7b </A>
Thathagar MB.
Beckers J.
Rothenberg G.
Green Chem.
2004,
6:
215
<A NAME="RW18410ST-7C">7c </A>
Ma D.
Liu F.
Chem. Commun.
2004,
1934
<A NAME="RW18410ST-7D">7d </A>
Li
J.-H.
Li J.-L.
Wang D.-P.
Pi S.-F.
Xie Y.-X.
Zhang M.-B.
Hu X.-C.
J. Org.
Chem.
2007,
72:
2053
<A NAME="RW18410ST-7E">7e </A>
Li
J.-H.
Li J.-L.
Wang D.-P.
Pi S.-F.
Xie Y.-X.
Zhang M.-B.
Hu X.-C.
J. Org.
Chem.
2007,
72:
2053
<A NAME="RW18410ST-8">8 </A>
Carril M.
Correa A.
Bolm C.
Angew.
Chem. Int. Ed.
2008,
47:
4862
<A NAME="RW18410ST-9A">9a </A>
Wang L.
Li P.
Zhang Y.
Chem. Commun.
2004,
514
<A NAME="RW18410ST-9B">9b </A>
Beletskaya IP.
Latyshev GV.
Tsvetkov AV.
Lukashev NV.
Tetrahedron
Lett.
2003,
44:
5011
<A NAME="RW18410ST-10">10 </A>
Huang H.
Jiang H.
Chen K.
Liu H.
J. Org. Chem.
2008,
73:
9061
<A NAME="RW18410ST-11A">11a </A>
Organic
Synthesis in Water
Grieca PA.
Blackie;
London:
1998.
<A NAME="RW18410ST-11B">11b </A>
Siskin M.
Katritzky AR.
Chem. Rev.
2001,
101:
825
<A NAME="RW18410ST-11C">11c </A>
Lindström UM.
Chem. Rev.
2002,
102:
2741
<A NAME="RW18410ST-11D">11d </A>
Kobayashi S.
Manabe K.
Acc. Chem. Res.
2002,
35:
209
<A NAME="RW18410ST-11E">11e </A>
Akiya N.
Savage PE.
Chem. Rev.
2002,
102:
2725
<A NAME="RW18410ST-11F">11f </A>
DeSimone JM.
Science
2002,
297:
799
<A NAME="RW18410ST-11G">11g </A>
Poliakoff M.
Fitzpatrick JM.
Farren TR.
Anastas PT.
Science
2002,
297:
807
<A NAME="RW18410ST-11H">11h </A>
Li C.-J.
Chem.
Rev.
2005,
105:
3095
<A NAME="RW18410ST-11I">11i </A>
Blackmond DG.
Armstrong A.
Coomber V.
Wells A.
Angew. Chem.
Int. Ed.
2007,
46:
3798
<A NAME="RW18410ST-11J">11j </A>
Minakata S.
Komatsu M.
Chem. Rev.
2008,
101:
825
<A NAME="RW18410ST-11K">11k </A>
Teo Y.-C.
Chua G.-L.
Chem. Eur. J.
2009,
15:
3072
<A NAME="RW18410ST-11L">11l </A>
Teo Y.-C.
Adv.
Synth. Catal.
2009,
351:
720
<A NAME="RW18410ST-11M">11m </A>
Zhu X.
Ma Y.
Su L.
Song H.
Chen G.
Liang D.
Wan Y.
Synthesis
2006,
3955
<A NAME="RW18410ST-11N">11n </A>
Carril M.
SanMartin R.
Domínguez E.
Chem.
Soc. Rev.
2008,
37:
639 ;
references cited therein
<A NAME="RW18410ST-12">12 </A>
Sinou D.
Adv.
Synth. Catal.
2002,
344:
221
<A NAME="RW18410ST-13A">13a </A>
Lipshutz BH.
Chung DW.
Rich B.
Org. Lett.
2008,
10:
3793
<A NAME="RW18410ST-13B">13b </A>
Guan JT.
Weng TQ.
Yu G.-A.
Liu SH.
Tetrahedron
Lett.
2007,
48:
7129
<A NAME="RW18410ST-13C">13c </A>
Leadbeater NE.
Marco M.
Tominack BJ.
Org. Lett.
2003,
5:
3919
For recent reviews on copper-catalyzed
cross-couplings, see:
<A NAME="RW18410ST-14A">14a </A>
Klapars A.
Antilla JC.
Huang X.
Buchwald
SL.
J. Am.
Chem. Soc.
2001,
123:
7727
<A NAME="RW18410ST-14B">14b </A>
Ma D.
Cai Q.
Acc. Chem. Res.
2008,
41:
1450
<A NAME="RW18410ST-14C">14c </A>
Kunz K.
Scholz U.
Ganzer D.
Synlett
2003,
2428
<A NAME="RW18410ST-14D">14d </A>
Ley SV.
Thomas AW.
Angew.
Chem. Int. Ed.
2003,
42:
5400
<A NAME="RW18410ST-14E">14e </A>
Beletskaya IP.
Cheprakov AV.
Coord.
Chem. Rev.
2004,
248:
2337
<A NAME="RW18410ST-14F">14f </A>
Evano G.
Blanchard N.
Toumi M.
Chem.
Rev.
2008,
108:
3054
<A NAME="RW18410ST-14G">14g </A>
Monnier F.
Taillefer M.
Angew. Chem. Int. Ed.
2009,
48:
6954 ; and references cited therein
<A NAME="RW18410ST-15A">15a </A>
Chen G.
Zhu X.
Cai J.
Wan Y.
Synth. Commun.
2007,
37:
1355
<A NAME="RW18410ST-15B">15b </A>
Guan JT.
Yu G.-A.
Chen L.
Weng TQ.
Yuan JJ.
Liu SH.
Appl. Organomet. Chem.
2009,
23:
75
Selected papers for copper-catalyzed
cross-couplings in organic solvents, see:
<A NAME="RW18410ST-16A">16a </A>
Rao H.
Fu H.
Jiang Y.
Zhao Y.
J. Org. Chem.
2005,
70:
8107
<A NAME="RW18410ST-16B">16b </A>
Rao H.
Jin Y.
Fu H.
Jiang Y.
Zhao Y.
Chem. Eur.
J.
2006,
12:
3636
<A NAME="RW18410ST-16C">16c </A>
Jiang D.
Fu H.
Jiang Y.
Zhao Y.
J. Org. Chem.
2007,
72:
672
<A NAME="RW18410ST-16D">16d </A>
Guo X.
Rao H.
Fu H.
Jiang Y.
Zhao Y.
Adv. Synth.
Catal.
2006,
348:
2197
<A NAME="RW18410ST-16E">16e </A>
Zeng L.
Fu H.
Qiao R.
Jiang Y.
Zhao Y.
Adv. Synth.
Catal.
2009,
351:
1671
<A NAME="RW18410ST-16F">16f </A>
Lu J.
Gong X.
Yang H.
Fu H.
Chem. Commun.
2010,
46:
4172
<A NAME="RW18410ST-16G">16g </A>
Rao H.
Fu H.
JiangY .
Zhao Y.
Angew.
Chem. Int. Ed.
2009,
48:
1114
<A NAME="RW18410ST-16H">16h </A>
Liu X.
Fu H.
Jiang Y.
Zhao Y.
Angew. Chem. Int. Ed.
2009,
48:
348
Copper-catalyzed cross-couplings
in neatly aqueous medium, see:
<A NAME="RW18410ST-17A">17a </A>
Wang F.
Fu H.
Jiang Y.
Zhao Y.
Green Chem.
2008,
10:
452
<A NAME="RW18410ST-17B">17b </A>
Wang F.
Fu H.
Jiang Y.
Zhao Y.
Adv. Synth. Catal.
2008,
350:
1830
<A NAME="RW18410ST-17C">17c </A>
Li X.
Yang D.
JiangY .
Fu H.
Green
Chem.
2010,
12:
1097
<A NAME="RW18410ST-17D">17d </A>
Yang D.
Fu H.
Chem. Eur. J.
2010,
16:
2366
<A NAME="RW18410ST-18">18 </A>
General Procedure
for the Synthesis of Compounds 3a-u
A 10
mL Schlenk tube equipped with a magnetic stirring bar was charged
with CuBr (0.1 mmol, 15 mg), NaOH (2 mmol, 80 mg), 1,10-phenanthroline
(0.2 mmol, 36 mg), TBAB [0.2-1 mmol, see Table
[² ]
for the details; note:
an additional KI (2 mmol) should be added for aryl bromide].
The tube was evacuated and back-filled with nitrogen, and this procedure
was repeated three times. Aryl halide (1.0 mmol), alkyne (2 mmol),
and H2 O (1.5 mL) were sequentially added to the tube
at r.t. under a stream of nitrogen, and the tube was sealed and
put into a pre-heated oil bath at 120 ˚C for 24
h under nitrogen atmosphere. After the resulting solution was cooled
to r.t., and the solution was extracted with EtOAc (3 × 3
mL). The combined organic phase was concentrated, and the remained
residue was purified by column chroma-tography on silica gel to
provide the desired product.