Synlett 2011(4): 464-468  
DOI: 10.1055/s-0030-1259528
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Catalytic Batch and Continuous Flow Production of Highly Enantioenriched Cyclohexane Derivatives with Polymer-Supported Diarylprolinol Silyl Ethers

Esther Alzaa, Sonia Sayaleroa, Xacobe C. Cambeiroa, Rafael Martín-Rapúna, Pedro O. Mirandaa, Miquel A. Pericàs*a,b
a Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
b Departament de Química Orgànica, Universitat de Barcelona (UB), 08028 Barcelona, Spain
Fax: +34(977)920222; e-Mail: mapericas@iciq.es;
Further Information

Publication History

Received 15 December 2010
Publication Date:
02 February 2011 (online)

Abstract

Diarylprolinol silyl ethers immobilized onto polystyrene have been employed as catalysts in the enantioselective domino Michael-Knoevenagel reaction of dimethyl 3-oxoglutarate and 3-substituted acrolein derivatives, including aliphatic ones. The best catalyst allows the preparation of highly functionalized cyclohexane derivatives in a straightforward and efficient manner, both under batch and continuous flow conditions.

    References and Notes

  • 1 Tietze LF. Brasche G. Gericke KM. Domino Reactions in Organic Chemistry   Wiley-VCH; Weinheim: 2006. 
  • For selected reviews, see:
  • 2a Enders D. Grondal C. Huettl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 
  • 2b Walji AM. MacMillan DWC. Synlett  2007,  1477 
  • 2c Shindoh N. Takemoto Y. Takasu K. Chem. Eur. J.  2009,  15:  12168 
  • 2d Grondal C. Jeanty M. Enders D. Nat. Chem.  2010,  2:  167 
  • 2e Westermann B. Ayaz M. van Berkel SS. Angew. Chem. Int. Ed.  2010,  49:  846 
  • 2f Bonne D. Coquerel Y. Constantieux T. Rodriguez J. Tetrahedron: Asymmetry  2010,  21:  1085 
  • For recent reviews on heterogeneized catalysts, see:
  • 3a De Vos DE. Vankelecom IFJ. Jacobs PA. Chiral Catalyst Immobilization and Recycling   Wiley-VCH; Weinheim: 2000. 
  • 3b Ding K. Uozumi Y. Handbook of Asymmetric Heterogeneous Catalysis   Wiley-VCH; Weinheim: 2008. 
  • 3c Gruttadauria M. Giacalone F. Noto R. Chem. Soc. Rev.  2008,  37:  1666 
  • 3d Jimeno C. Sayalero S. Pericàs MA. In Heterogenized Homogeneous Catalysts for Fine Chemicals Production, Catalysis by Metal Complexes Vol. 33   Barbaro P. Liguori F. Springer Science; Berlin: 2010. 
  • For recent reviews on flow chemistry, see:
  • 4a Kirschning A. Solodenko W. Mennecke K. Chem. Eur. J.  2006,  12:  5972 
  • 4b Cozzi F. Adv. Synth. Catal.  2006,  348:  1367 
  • 4c Mason BP. Price KE. Steinbacher JL. Bogdan AR. McQuade DT. Chem. Rev.  2007,  107:  2300 
  • 4d Wiles C. Watts P. Eur. J. Org. Chem.  2008,  1655 
  • 4e Kirschning A. Beilstein J. Org. Chem.  2009,  5:  No. 15 
  • For recent advances in flow chemistry, see:
  • 5a Saaby S. Knudsen KR. Ladlow M. Ley SV. Chem. Commun.  2005,  2909 
  • 5b Baxendale IR. Deeley J. Griffiths-Jones CM. Ley SV. Saaby S. Tranmer GK. Chem. Commun.  2006,  2566 
  • 5c Bogdan AR. Mason BP. Sylvester KT. MacQuade DT. Angew. Chem. Int. Ed.  2007,  46:  1698 
  • 5d Smith CD. Baxendale IR. Lanners S. Hayward JJ. Smith SC. Ley SV. Org. Biomol. Chem.  2007,  5:  1559 
  • 6 Little RD. Dawson JR. Tetrahedron Lett.  1980,  21:  2609 
  • 7a Berkessel A. Gröger H. Asymmetric Organocatalysis   Wiley-VCH; Weinheim: 2005. 
  • 7b Dalko PI. Enantioselective Organocatalysis   Wiley-VCH; Weinheim: 2007. 
  • 7c Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed.  2008,  47:  6138 
  • 7d Yu X. Wang W. Org. Biomol. Chem.  2008,  6:  2037 
  • 7e Marigo M. Melchiorre P. ChemCatChem  2010,  2:  621 
  • 8 Hayashi Y. Toyoshima M. Gotoh H. Ishikawa H. Org. Lett.  2009,  11:  45 
  • 9 Bertelsen S. Johansen RL. Jørgensen KA. Chem. Commun.  2008,  3016 
  • For selected examples of enantioselective domino reactions catalyzed by diarylprolinol silyl ethers, see:
  • 10a Marigo M. Schulte T. Franzén J. Jørgensen KA. J. Am. Chem. Soc.  2005,  127:  15710 
  • 10b Enders D. Hüttl MRM. Grondal C. Raabe G. Nature (London)  2006,  441:  861 
  • 10c Enders D. Hüttl MRM. Runsink J. Raabe G. Wendt B. Angew. Chem. Int. Ed.  2007,  46:  467 
  • 10d Enders D. Narine AA. Benninghaus TR. Raabe G. Synlett  2007,  1667 
  • 10e Carlone A. Cabrera S. Marigo M. Jørgensen KA. Angew. Chem. Int. Ed.  2007,  46:  1101 
  • 10f Hayashi Y. Okano T. Aratake S. Hazelard D. Angew. Chem. Int. Ed.  2007,  46:  4922 
  • 10g Enders D. Hüttl MRM. Raabe G. Bats JW. Adv. Synth. Catal.  2008,  350:  267 
  • 10h Enders D. Wang C. Bats JW. Angew. Chem. Int. Ed.  2008,  47:  7539 
  • 10i Zhao G.-L. Rios R. Vesley J. Eriksson L. Córdova A. Angew. Chem. Int. Ed.  2008,  47:  8468 
  • 10j Enders D. Wang C. Bats JW. Synlett  2009,  1777 
  • 10k Enders D. Wang C. Raabe G. Synthesis  2009,  4119 
  • 10l Kotame P. Hong B.-C. Liao J.-H. Tetrahedron Lett.  2009,  50:  704 
  • 10m Zhang F.-L. Xu A.-W. Gong Y.-F. Wei M.-H. Zhang X.-L. Chem. Eur. J.  2009,  15:  6815 
  • 10n Franzén J. Fisher A. Angew. Chem. Int. Ed.  2009,  48:  787 
  • 10o Rueping M. Kuenkel A. Tato F. Bats JW. Angew. Chem. Int. Ed.  2009,  48:  3699 
  • 10p Reyes E. Talavera G. Vicario JL. Badía D. Carrillo L. Angew. Chem. Int. Ed.  2009,  48:  5701 
  • 10q Zhu D. Lu M. Dai L. Zhong G. Angew. Chem. Int. Ed.  2009,  48:  6089 
  • 10r Hong L. Sun W. Liu C. Wang L. Wang R. Chem. Eur. J.  2010,  16:  440 
  • 10s Enders D. Kruell R. Bettray W. Synthesis  2010,  567 
  • 10t Enders D. Wang C. Mukanova M. Greb A. Chem. Commun.  2010,  46:  2447 
  • 10u Tang J. Xu DQ. Xia AB. Wang YF. Jiang JR. Luo SP. Xu ZY. Adv. Synth. Catal.  2010,  352:  2121 
  • 10v Urushima T. Sakamoto D. Ishikawa H. Hayashi Y. Org. Lett.  2010,  12:  4588 
  • 11a Font D. Jimeno C. Pericàs MA. Org. Lett.  2006,  8:  4653 
  • 11b Font D. Bastero A. Sayalero S. Jimeno C. Pericàs MA. Org. Lett.  2007,  9:  1943 
  • 11c Alza E. Cambeiro XC. Jimeno C. Pericàs MA. Org. Lett.  2007,  9:  3717 
  • 11d Font D. Sayalero S. Bastero A. Jimeno C. Pericàs MA. Org. Lett.  2008,  10:  337 
  • 11e Alza E. Rodriguez-Escrich C. Sayalero S. Bastero A. Pericàs MA. Chem. Eur. J.  2009,  15:  10167 
  • 11f Alza E. Pericàs MA. Adv. Synth. Catal.  2009,  351:  3051 
  • 12a Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 12b Sharpless KB. Fokin VV. Green LG. Rostovtsev VV. Angew. Chem. Int. Ed.  2002,  114:  2708 
  • 12c Meldal M. Tornøe CW. Chem. Rev.  2008,  108:  2952 
  • 13 For a discussion on the suitability of CuAAC reactions as a supporting strategy in catalysis, see: Bastero A. Font D. Pericàs MA. J. Org. Chem.  2007,  72:  2460 
  • 14 Özçubukçu S. Özkal E. Jimeno C. Pericàs MA. Org. Lett.  2009,  11:  4680 
15

See Supporting Information for details.

16

General Procedure for the Domino Michael-Knoevenagel Process of α,β-Unsaturated Aldehydes and Dimethyl 3-Oxopentanedioate: Benzoic acid (0.05 mmol), the corresponding aldehyde (0.25 mmol) and dimethyl 3-oxopentanedioate (0.275 mmol) were added to catalyst 5 (0.025 mmol) previously swollen in CH2Cl2 (1 mL). The suspension was shaken at r.t. for the time indicated in Table  [²] and then directly filtered. The resin was rinsed with CH2Cl2 (3 × 1 mL) and the organic filtrate was concentrated under reduced pressure. MeOH (1 mL) and NaBH4 (0.25 mmol) were added to a solution of the resulting crude in CH2Cl2 (0.5 mL) at 0 ˚C, which was stirred at that temper-ature for 20 min. After addition of the pH 7 phosphate buffer, the organic materials were extracted with CH2Cl2 and the combined organic phase was dried over Na2SO4, and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2-EtO2) to afford 7.

17

The deposition number at the Cambridge Crystallographyc Data Centre is CCDC 804763.

18

These recycling experiments show the results obtained in six consecutive runs. After each run, the reaction mixture was filtered and the solid-supported catalyst was washed with CH2Cl2 and directly reused.