Synlett 2010(18): 2789-2791  
DOI: 10.1055/s-0030-1259006
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Lactam Enolate-Pyridone Addition: Synthesis of 4-Halocytisines

Patrick Durkina, Pietro Magronea,b, Stella Matthewsa, Clelia Dallanoceb, Timothy Gallagher*a
a School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
Fax: +44(117)9251295; e-Mail: t.gallagher@bristol.ac.uk;
b Università degli studi di Milano, Dipartimento di Scienze Farmaceutiche ‘Pietro Pratesi’, via L. Mangiagalli, 20133 Milan, Italy
Weitere Informationen

Publikationsverlauf

Received 14 September 2010
Publikationsdatum:
14. Oktober 2010 (online)

Abstract

The application of a lactam enolate-pyridone addition sequence, originally developed for cytisine, has been applied successfully to generate the first examples of 4-halocytisines. Variation of the lactam component provides cyfusine and 4-fluorocyfusine.

    References and Notes

  • Synthetic chemistry:
  • 1a Stead D. O’Brien P. Tetrahedron  2007,  63:  1885 
  • Medicinal chemistry and pharmacology:
  • 1b Jensen AA. Frølund B. Lijefors T. Krogsgaard-Larsen P. J. Med. Chem.  2005,  48:  4705 
  • 1c Pabreza LA. Dhawan S. Kellar KJ. Mol. Pharmacol.  1991,  39:  9 
  • 1d Papke RL. Heinemann SF. Mol. Pharmacol.  1994,  45:  142 
  • 2 Etter JF. Arch. Intern. Med.  2006,  166:  1553 
  • 3a Coe JW. Brooks PR. Vetelino MG. Wirtz MC. Arnold EP. Huang J. Sands SB. Davis TI. Lebel LA. Fox CB. Shrikhande A. Heym JH. Schaeffer E. Rollema H. Lu Y. Mansbach RS. Chambers LK. Rovetti CC. Schulz DW. Tingley FD. O’Neill BT. J. Med. Chem.  2005,  48:  3474 
  • 3b Coe JW. Vetelino MG. Bashore CG. Wirtz MC. Brooks PR. Arnold EP. Lebel LA. Fox CB. Sands SB. Davis TI. Schulz DW. Rollema H. Tingley FD. O’Neill BT. Bioorg. Med. Chem. Lett.  2005,  15:  2974 
  • 3c Mihalak KB. Carroll FI. Luetje CW. Mol. Pharmacol.  2006,  70:  801 
  • 3d Coe JW. Rollema H. O’Neill BT. Ann. Rep. Med. Chem.  2009,  44:  71 
  • 4a Botuha C. Galley CMS. Gallagher T. Org. Biomol. Chem.  2004,  2:  1825 
  • 4b Gray D. Gallagher T. Angew. Chem. Int. Ed.  2006,  45:  2419 
  • 4c Frigerio F. Haseler CA. Gallagher T. Synlett  2010,  729 
  • 4d Gallagher T. Derrick I. Durkin PM. Haseler CA. Hirschhäuser C. Magrone P. J. Org. Chem.  2010,  75:  3766 
  • 5 Yohannes D. Procko K. Lebel LA. Fox CB. O’Neill BT. Bioorg. Med. Chem. Lett.  2008,  18:  2316 
  • 6a Imming P. Klaperski P. Stubbs MT. Seitz G. Gündisch D. Eur. J. Med. Chem.  2001,  36:  375 
  • 6b Slater YE. Houlihan LM. Maskell PD. Exley R. Bermudez I. Lukas RJ. Valdivia AC. Cassels BK. Neuropharmacol.  2003,  44:  503 
  • 7 Chellappan SK. Xiao Y. Tueckmantel W. Kellar KJ. Kozikowski AP. J. Med. Chem.  2006,  49:  2673 
  • 8 Leznoff CC. Svirskaya PI. Yedidia V. Miller JM.
    J. Heterocycl. Chem.  1985,  22:  145 
  • 10a Urban R. Schnider O. Helv. Chim. Acta  1964,  47:  363 
  • 10b Morgentin R. Pasquet G. Boutron P. Jung F. Lamorlette M. Maudet M. Ple P. Tetrahedron  2008,  64:  2772 
  • 13 Stanetty P. Turner M. Mihovilovic MD. Molecules  2005,  10:  367 ; and ref. 4d
9

The synthesis of 4-fluoropyridone 4, [8] which involves separation of a mixture of 4- and 5-nitropyridines, proved problematic in terms of extraction/isolation of the intermediate 4-amino-2-methoxypyridine. Consequently,
an alternative procedure [¹0] based on commercially available 4-amino-2-chloropyridine was employed. While this still suffers from issues of volatility associated with I, this intermediate was not isolated but was carried through directly to pyridone 4 (Scheme  [5] )

Scheme 5 Synthesis of 4-fluoropyridone (4)

11

All novel compounds described were prepared as racemates and have been characterized fully. Data for key final compounds are presented.
Data for 4-Fluorocytisine (8) ¹H NMR (400 MHz, CDCl3): δ = 1.96 (2 H, t, J = 3.0 Hz, H8), 2.31-2.37 (1 H, m, H9), 2.87-2.92 (1 H, m, H7), 2.96-3.14 (4 H, m, H11, H13), 3.87 (1 H, ddt, J = 15.5, 6.5, 1.0, 1.0 Hz, H10), 4.08 (1 H, d, J = 15.5 Hz, H10), 5.89 (1 H, dd, J = 7.0, 3.0 Hz, H5), 6.10 (1 H, dd, J = 11.0, 3.0 Hz, H3), no resonance attributed to NH was observed. ¹³C NMR (100 MHz, CDCl3): δ = 26.2 (CH2, C8), 27.6 (CH, C9), 36.0 (d, J = 2.5 Hz, CH, C7), 49.8 (CH2, C10), 52.9 (CH2, C11), 53.7 (CH2, C13), 96.5 (d, J = 26.0 Hz, CH, C5), 99.7 (d, J = 16.5 Hz, CH, C3), 153.5 (d, J = 13.5 Hz, C, C6), 164.9 (d, J = 19.0 Hz, C=O, C2), 169.9 (d, J = 264.0 Hz, CF, C4). ¹9F NMR (376 MHz, CDCl3): δ = -99.9 (m). HRMS: m/z calcd for C11H14FN2O: 209.1090; found: 209.1095 [M + H]+.

12

Data for 4-Bromocytisine (12)
¹H NMR (400 MHz, CDCl3): δ = 1.55 (1 H, br s, NH), 1.96 (2 H, m, H8), 2.35 (1 H, m, H9), 2.89 (1 H, m, H7), 2.98-3.12 (4 H, m, H11, H13), 3.86 (1 H, ddd, J = 15.5, 6.5, 1.0 Hz, H10), 4.06 (1 H, d, J = 15.5 Hz, H10), 6.20 (1 H, d, J = 2.0 Hz, H5), 6.70 (1 H, d, J = 2.5 Hz, H3). ¹³C NMR (100 MHz, CDCl3): δ = 26.3 (CH2, C8), 27.7 (CH, C9), 35.6 (CH, C7), 49.9 (CH2, C10), 53.1, 53.8 (CH2, C11, C13), 109.0 (CH, C5), 118.9 (CH, C3), 135.1 (C, C4), 151.6 (C, C6), 162.6 (C=O, C2). HRMS: m/z calcd for C11H13 79BrN2O: 268.0211; found: 268.0216 [M]+.

Data for 4-Chlorocytisine (13)
¹H NMR (400 MHz, CDCl3): d = 1.55 (1 H, br s, NH), 1.96 (2 H, m, H8), 2.35 (1 H, m, H9), 2.89 (1 H, m, H7), 2.98-3.12 (4 H, m, H11, H13), 3.87 (1 H, ddd, J = 15.6, 6.6, 1.2 Hz, H10), 4.08 (1 H, d, J = 15.6 Hz, H10), 6.07 (1 H, d, J = 2.0 Hz, H5), 6.50 (1 H, d, J = 2.2 Hz, H3). ¹³C NMR (100 MHz, CDCl3): d = 26.3 (CH2, C8), 27.7 (CH, C9), 35.7 (CH, C7), 49.9 (CH2, C10), 53.5, 54.2 (CH2, C11, C13), 106.5 (CH, C5), 115.4 (CH, C3), 146.0 (C, C4), 151.6 (C, C6), 162.6 (C=O, C2). HRMS: m/z calcd for C11H14 ³5ClN2O: 225.0795; found: 225.0784 [M + H]+.

14

Data for Cyfusine (17)
¹H NMR (400 MHz, CDCl3): δ = 2.94 (1 H, dd, J = 11.0, 3.0 Hz, H6), 3.03-3.20 (3 H, m, H6, H8, H8a), 3.24 (1 H, dd, J = 11.5, 7.5 Hz, H8), 3.87 (1 H, td, J = 8.0, 2.5 Hz, H5b), 4.00 (1 H, dd, J = 13.5, 3.5 Hz, H9), 4.33 (1 H, dd, J = 13.5, 9.0 Hz, H9), 6.10 (1 H, dt, J = 7.0, 1.0 Hz, H5), 6.41 (1 H, dt, J = 9.0, 1.0 Hz, H3), 7.37 (1 H, dd, J = 9.0, 7.0 Hz, H4), no resonance attributed to NH was observed. ¹³C NMR (100 MHz, CDCl3): δ = 38.5 (CH, C8a), 50.9 (CH, C5b), 54.7 (CH2, C8), 54.9 (CH2, C6), 55.1 (CH2, C9), 101.0 (CH, C5), 117.3 (CH, C3), 140.6 (CH, C4), 153.7 (C, C5a), 162.1 (C=O, C2). HRMS: m/z calcd for C10H13N2O: 177.1028; found: 177.1023 [M + H]+. This compound has been reported previously,5 however, no analytical data were provided and these have been included here for comparison with 19.¹5

15

The following numbering system was applied for 8-fluoro-2,3,3a,4-tetrahydro-1H-pyrrolo[3,4-a]indolizin-6 (9bH)-one (19, Figure  [²] ), in order to parallel that for cytisine.
Data for 4-Fluorocyfusine (19)
¹H NMR (500 MHz, CDCl3): δ = 2.95 (1 H, dd, J = 11.0, 3.0 Hz, H6), 3.07-3.21 (3 H, m, H6, H8, H8a), 3.25 (1 H, dd, J = 11.5, 7.5 Hz, H8), 3.85 (1 H, td, J = 8.0, 2.0 Hz, H5b), 3.96 (1 H, dd, J = 13.5, 3.5 Hz, H9), 4.30 (1 H, dd, J = 13.5, 8.5 Hz, H9), 5.97 (1 H, ddd, J = 6.5, 2.5, 1.0 Hz, H5), 6.05 (1 H, ddd, J = 11.0, 2.5, 1.0 Hz, H3), no resonance attributed to NH was observed. ¹³C NMR (125 MHz, CDCl3): δ = 38.6 (CH, C8a), 50.7 (CH, C5b), 54.4 (CH2, C8), 54.7 (CH2, C6), 54.9 (CH2, C9), 93.1 (d, J = 28.0 Hz, CH, C3), 100.5 (d, J = 17.5 Hz, CH, C5), 155.8 (d, J = 13.5 Hz, C, C5a), 162.5 (d, J = 18.5 Hz, C=O, C2), 171.9 (d, J = 265.0 Hz, CF, C4). ¹9F NMR (376 MHz, CDCl3): δ = -97.14 (m). HRMS: m/z calcd for C10H12FN2O: 195.0928; found: 195.0930 [M + H]+.

Figure 2