References and Notes
<A NAME="RW08710ST-1">1</A>
Boltje TJ.
Buskas T.
Boons GJ.
Nat.
Chem.
2009,
1:
611
<A NAME="RW08710ST-2">2</A>
Zhu XM.
Schmidt RR.
Angew. Chem. Int.
Ed.
2009,
48:
1900
<A NAME="RW08710ST-3">3</A>
Demchenko AV.
Synlett
2003,
1225
<A NAME="RW08710ST-4A">4a</A>
Benakli K.
Zha C.
Kerns RJ.
J. Am. Chem. Soc.
2001,
123:
9461
<A NAME="RW08710ST-4B">4b</A>
Boysen M.
Gemma E.
Lahmann M.
Oscarson S.
Chem. Commun.
2005,
3044
<A NAME="RW08710ST-4C">4c</A>
Manabe S.
Ishii K.
Ito Y.
J.
Am. Chem. Soc.
2006,
128:
10666
<A NAME="RW08710ST-4D">4d</A>
Geng Y.
Zhang L.-H.
Ye X.-S.
Chem.
Commun.
2008,
597
<A NAME="RW08710ST-5A">5a</A>
van der Plas HC.
Koudijs A.
Recl. Trav. Chim. Pays-Bas
1978,
97:
159
<A NAME="RW08710ST-5B">5b</A>
Crich D.
Smith M.
Yao Q.
Picione J.
Synthesis
2001,
323
<A NAME="RW08710ST-6A">6a</A>
Huang X.
Huang L.
Wang H.
Ye X.-S.
Angew. Chem.
Int. Ed.
2004,
43:
5221
<A NAME="RW08710ST-6B">6b</A>
Huang L.
Wang Z.
Li X.
Ye X.-S.
Huang X.
Carbohydr.
Res.
2006,
341:
1669
<A NAME="RW08710ST-6C">6c</A>
Huang L.
Huang X.
Chem. Eur. J.
2007,
13:
529
<A NAME="RW08710ST-6D">6d</A>
Wang Y.
Ye X.-S.
Zhang L.-H.
Org.
Biomol. Chem.
2007,
5:
2189
<A NAME="RW08710ST-7A">7a</A>
Crich D.
Sun S.
J.
Org. Chem.
1996,
61:
4506
<A NAME="RW08710ST-7B">7b</A>
Crich D.
Sun S.
J. Org. Chem.
1997,
62:
1198
<A NAME="RW08710ST-7C">7c</A>
Codée JDC.
Van den Bos LJ.
Litjens REJN.
Overkleeft HS.
Van Boom JH.
Van der Marel GA.
Org. Lett.
2003,
5:
1947
<A NAME="RW08710ST-7D">7d</A>
Yamago S.
Yamada T.
Maruyama T.
Yoshida J.-I.
Angew. Chem. Int. Ed.
2004,
43:
2145
<A NAME="RW08710ST-7E">7e</A>
Nguyen HM.
Poole JL.
Gin DY.
Angew. Chem. Int. Ed.
2001,
40:
414
<A NAME="RW08710ST-8A">8a</A>
Wei P.
Kerns RJ.
J.
Org. Chem.
2005,
70:
4195
<A NAME="RW08710ST-8B">8b</A>
Olsson JD.
Eriksson L.
Lahmann M.
Oscarson S.
J.
Org. Chem.
2008,
73:
7181
<A NAME="RW08710ST-8C">8c</A>
Manabe S.
Ishii K.
Hashizume D.
Koshino H.
Ito Y.
Chem.
Eur. J.
2009,
15:
6894
<A NAME="RW08710ST-9">9</A>
Wang C.
Wang H.
Huang X.
Zhang L.-H.
Ye X.-S.
Synlett
2006,
2846
<A NAME="RW08710ST-10A">10a</A>
Crich D.
Sun S.
J.
Am. Chem. Soc.
1997,
119:
11217
<A NAME="RW08710ST-10B">10b</A>
Crich D.
Cai W.
J. Org. Chem.
1999,
64:
4926
<A NAME="RW08710ST-10C">10c</A>
Crich D.
Smith M.
J. Am. Chem. Soc.
2001,
123:
9015
Although participating solvents
such as Et2O or MeCN can influence the intermediate of
glycosylations, they cannot be used as additives because a large
excess of them are needed. About the solvent effect, see:
<A NAME="RW08710ST-11A">11a</A>
Wulff G.
Rohle G.
Angew. Chem., Int. Ed. Engl.
1974,
13:
157
<A NAME="RW08710ST-11B">11b</A>
Vankar D.
Vankar PS.
Behrendt M.
Schmidt RR.
Tetrahedron
1992,
47:
9985 ; and references cited therein
<A NAME="RW08710ST-12">12</A>
Mukaiyama T.
Angew.
Chem. Int. Ed.
2004,
43:
5590 ;
and references cited therein
<A NAME="RW08710ST-13">13</A>
Lemieux RU.
Hendriks KB.
Stick RV.
James K.
J.
Am. Chem. Soc.
1975,
97:
4056 ;
and references cited therein
<A NAME="RW08710ST-14">14</A>
Park J.
Kawatkar S.
Kim JH.
Boons GJ.
Org. Lett.
2007,
9:
1959
Sulfonium ion observation:
<A NAME="RW08710ST-15A">15a</A>
West AC.
Schuerch C.
J.
Am. Chem. Soc.
1973,
95:
1333
<A NAME="RW08710ST-15B">15b</A>
Kim JH.
Yang H.
Park J.
Boons GJ.
J. Am. Chem. Soc.
2005,
127:
12090
<A NAME="RW08710ST-15C">15c</A>
Nokami T.
Shibuya A.
Manabe S.
Ito Y.
Yoshida J.
Chem.
Eur. J.
2009,
15:
2252
<A NAME="RW08710ST-16">16</A>
Hadd MJ.
Gervay J.
Carbohydr. Res.
1999,
320:
61
<A NAME="RW08710ST-17">17</A>
General Procedures
for Glycosylations of Donors 1 or 2 with Acceptors 3-8
Tf2O
(8.7 µL, 0.052 mmol, 1.3 equiv) was added to a stirred mixture
of donors 1 or 2 (21.2
mg, 0.048 mmol, 1.2 equiv), BSM (11.1 mg, 0.052 mmol, 1.3 equiv),
and activated 4 Å MS (300 mg, powder) in CH2Cl2 (3
mL) at -73 ˚C under nitrogen atmosphere.
The reaction mixture was stirred for 5 min, after loss of the donor
detected by TLC, the additive (0.1-2.0 equiv) was added
to the mixture. After stirring for 15 min, a solution of the acceptor 3 (15.0 mg, 0.040 mmol, 1.0 equiv) or other
acceptors in CH2Cl2 (0.2 mL) was added dropwise
to the reaction mixture. The mixture was stirred and warmed up to
r.t. slowly, quenched by Et3N (0.1 mL). The precipitate
was filtered off, and the filtrate was concentrated. The residue
was purified by column chromatography on silica gel to give the
products.
<A NAME="RW08710ST-18">18</A>
Representative
Procedures for Detecting Intermediates after Activation of Donor
1 by Variable Temperature NMR Spectroscopy
To a solution
of donor 1 (8.7 mg, 0.02 mmol), BSM (5.1
mg, 0.024 mmol) in CD2Cl2 (0.5 mL) in a NMR
tube at -60 ˚C, under an argon atmosphere,
was added 1.2 equiv of Tf2O (0.024 mmol, 4.1 µL).
The NMR tube was immediately transferred to the pre-cooled NMR probe
(-60 ˚C), and ¹H NMR
was recorded. Subsequently the temperature of the probe was raised
in 10 ˚C steps with monitoring by ¹H NMR.
<A NAME="RW08710ST-19">19</A>
Product 9 was
purified by column chromatography on silica gel (PE-EtOAc,
3:1); R
f
= 0.3
(PE-EtOAc, 1.5:1). ¹H NMR (400 MHz,
CDCl3): δ = 7.59-7.61 (m,
2 H), 7.33-7.40 (m, 8 H), 6.25 (d, 1 H, J = 2.8
Hz, H-1′), 5.55 (s, 1 H), 5.30 (s, 1 H), 4.70 (d, 1 H, J = 3.6 Hz,
H-1), 4.64 (d, 1 H, J = 11.6
Hz), 4.53 (d, 1 H, J = 11.6
Hz), 4.11-4.34 (m, 6 H), 3.77-3.84 (m, 2 H), 3.72
(t, 1 H, J = 10.0
Hz), 3.51-3.56 (m, 2 H), 3.37 (s, 3 H), 2.40 (s, 3 H),
2.08 (s, 3 H), 2.04 (s, 3 H). ¹³C NMR
(100 MHz, CDCl3): δ = 170.38 (2 C),
169.35, 152.90, 137.54, 137.11, 128.80, 128.62, 128.54, 128.47,
128.05, 126.29, 126.20, 101.14, 97.94, 95.01, 82.39, 78.38, 72.98,
72.07, 72.00, 68.87, 68.03, 65.80, 61.77, 61.54, 56.06, 55.17, 23.80,
20.58, 20.54. ESI-MS: m/z = 686 [M + H]+,
703 [M + NH4]+,
708 [M + Na]+. Anal.
Calcd for C34H39NO14: C, 59.56;
H, 5.73; N, 2.04. Found: C, 59.30; H, 5.69; N, 1.97.
<A NAME="RW08710ST-20">20</A>
Product 10 was
purified by column chromatography on silica gel (PE-EtOAc,
1.5:1); R
f
= 0.1
(PE-EtOAc, 1.5:1). ¹H NMR (400 MHz,
CDCl3): δ = 7.48-7.50 (m,
2 H), 7.31-7.38 (m, 8 H), 5.59 (s, 1 H), 5.56 (s, 1 H),
5.08 (d, 1 H, J = 7.6
Hz, H-1′), 4.64 (d, 1 H, J = 11.8
Hz), 4.54 (d, 1 H, J = 3.6
Hz, H-1), 4.52 (d, 1 H, J = 12.0
Hz), 4.32 (dd, 1 H, J = 7.6,
12.0 Hz), 4.15-4.24 (m, 3 H), 3.95-4.08 (m, 3
H), 3.63-3.79 (m, 4 H), 3.30 (s, 3 H), 2.38 (s, 3 H), 2.10
(s, 3 H), 1.98 (s, 3 H). ¹³C NMR (100
MHz, CDCl3): δ = 171.25, 170.28, 169.33,
153.54, 137.91, 137.35, 128.86, 128.56, 128.18, 128.03, 127.45,
126.04, 103.01, 100.85, 98.25, 80.63, 78.79, 77.23, 76.33, 72.98,
72.23, 68.84, 64.06, 62.53, 61.33, 57.55, 55.22, 25.08, 20.59, 20.56.
ESI-MS:
m/z = 686 [M + H]+,
703 [M + NH4]+,
708 [M + Na]+, 724 [M + K]+.
Anal. Calcd for C34H39NO14: C,
59.56; H, 5.73; N, 2.04. Found: C, 59.34; H, 5.67; N, 1.96.
<A NAME="RW08710ST-21">21</A>
The α-anomers and β-anomers
were identified by their
¹H NMR coupling
constants for anomeric protons. For α-anomers, J
1,2 = 2.4-2.8
Hz; for β-anomers, J
1,2 = 7.2-7.6
Hz.