Abstract
A short and efficient synthesis of the indolizidine alkaloid
(S )-coinicine has been achieved using
organocatalytic sequential α-aminoxylation and Horner-Wadsworth-Emmons
olefination of an aldehyde catalyzed by l -proline.
Similarly, a common organocatalytic α-aminoxylation route
has been developed for the asymmetric synthesis of both (R )-coniine and (S )-coinicine.
Key words
synthesis - organocatalysis - sequential reactions - proline - hemlock alkaloids
References
<A NAME="RZ10510SS-1A">1a </A>
Fodor GB.
Colasanti B.
Alkaloids : Chemical
and Biological Perspectives
Vol. 3:
Pelletier SW.
Wiley;
New York:
1985.
Chap.
1.
p.1-90
<A NAME="RZ10510SS-1B">1b </A>
Schneider MJ.
Alkaloids : Chemical and Biological Perspecti ves
Vol. 10:
Pelletier SW.
Wiley;
New York:
1996.
Chap.
3.
p.155-315
<A NAME="RZ10510SS-1C">1c </A>
Numata A.
Ibuka I.
The Alkaloids
Vol.
31:
Brossi A.
Academic
Press;
New York:
1987.
p.193-315
<A NAME="RZ10510SS-2A">2a </A>
Rubiralta M.
Giralt E.
Diez A.
Piperidine.
Structure, Preparation, Reactivity and Synthetic Applications of Piperidine
and its Derivatives
Elsevier;
Amsterdam:
1991.
For a recent review, see:
<A NAME="RZ10510SS-2B">2b </A>
Laschat S.
Dickner T.
Synthesis
2000,
1781
<A NAME="RZ10510SS-3A">3a </A>
Bailey PD.
Millwood PA.
Smith PD.
Chem. Commun.
1998,
633
<A NAME="RZ10510SS-3B">3b </A>
Weintraub PM.
Sabol JS.
Kane JM.
Borcherding DR.
Tetrahedron
2003,
59:
2953
<A NAME="RZ10510SS-3C">3c </A>
Felpin F.-X.
Lebreton J.
Eur. J. Org. Chem.
2003,
3693
<A NAME="RZ10510SS-3D">3d </A>
Couty F.
Amino
Acids
1999,
16:
297
For recent syntheses of enantiopure
(R )-/(S )-coinicine,
see:
<A NAME="RZ10510SS-4A">4a </A>
Munchhof MJ.
Meyers AI.
J.
Org. Chem.
1995,
60:
7084
<A NAME="RZ10510SS-4B">4b </A>
Takahata H.
Kubota M.
Takahashi S.
Momose T.
Tetrahedron: Asymmetry
1996,
7:
3047
<A NAME="RZ10510SS-4C">4c </A>
Arisawa M.
Takezawa E.
Nishida A.
Mori M.
Nakagawa M.
Synlett
1997,
1179
<A NAME="RZ10510SS-4D">4d </A>
Sánchez-Sancho F.
Herradón B.
Tetrahedron:
Asymmetry
1998,
9:
1951
<A NAME="RZ10510SS-4E">4e </A>
Sibi MP.
Christensen JW.
J.
Org. Chem.
1999,
64:
6434
<A NAME="RZ10510SS-4F">4f </A>
Davies SB.
McKervey MA.
Tetrahedron
Lett.
1999,
40:
1229
<A NAME="RZ10510SS-4G">4g </A>
Groaning MD.
Meyers AI.
Chem. Commun.
2000,
1027
<A NAME="RZ10510SS-4H">4h </A>
Arisawa M.
Takahashi M.
Takezawa E.
Yamaguchi T.
Torizawa Y.
Nishida A.
Nakagawa M.
Chem.
Pharm. Bull.
2000,
48:
1593
<A NAME="RZ10510SS-4I">4i </A>
Andrés JM.
Herráiz-Sierra I.
Pedrosa R.
Pérez-Encabo A.
Eur.
J. Org. Chem.
2000,
1719
<A NAME="RZ10510SS-4J">4j </A>
Lim SH.
Ma S.
Beak P.
J.
Org. Chem.
2001,
66:
9056
<A NAME="RZ10510SS-4K">4k </A>
Costa A.
Nájera C.
Sansano JM.
Tetrahedron: Asymmetry
2001,
12:
2205
<A NAME="RZ10510SS-4L">4l </A>
Park SH.
Kang HJ.
Ko S.
Park S.
Chang S.
Tetrahedron:
Asymmetry
2001,
12:
2621
<A NAME="RZ10510SS-4M">4m </A>
Yoda H.
Katoh H.
Ujihara Y.
Takabe K.
Tetrahedron Lett.
2001,
42:
2509
<A NAME="RZ10510SS-4N">4n </A>
Dieter RK.
Chen N.
Watson RT.
Tetrahedron
2005,
61:
3221
For the synthesis of piperidines and indolizines via lithium
amide conjugate addition, see:
<A NAME="RZ10510SS-4O">4o </A>
Davies SG.
Iwamoto K.
Smethurst CAP.
Smith AD.
Rodriguez-Solla H.
Synlett
2002,
1146
<A NAME="RZ10510SS-4P">4p </A>
Burke AJ.
Davies SG.
Garner AC.
McCarthy TD.
Roberts PM.
Smith AD.
Rodriguez-Solla H.
Vickers RJ.
Org. Biomol. Chem.
2004,
2:
1387
<A NAME="RZ10510SS-4Q">4q </A>
Hua DH.
Bharathi SN.
Panangadan JAK.
Tsujimoto A.
J.
Org. Chem.
1991,
56:
6998
<A NAME="RZ10510SS-5A">5a </A>
Dalko PI.
Enantioselective
Organocatalysis: Reactions and Experimental Procedures
Wiley-VCH;
Weinheim:
2007.
<A NAME="RZ10510SS-5B">5b </A>
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638
<A NAME="RZ10510SS-6">6 </A>
MacMillian DWC.
Nature (London)
2008,
455:
304
<A NAME="RZ10510SS-7A">7a </A>
Casas J.
Engqvist M.
Ibrahem I.
Kaynak B.
Cordova A.
Angew. Chem. Int. Ed.
2005,
44:
1343
<A NAME="RZ10510SS-7B">7b </A>
Ramachary DB.
Chowdari NS.
Barbas CF.
Synlett
2003,
1910
<A NAME="RZ10510SS-7C">7c </A>
Hechavarria Fonseca MT.
List B.
Angew.
Chem. Int. Ed.
2004,
43:
3958
For a review on α-functionalization,
see:
<A NAME="RZ10510SS-7D">7d </A>
Franzen J.
Marigo M.
Fielenbach D.
Wabnitz TC.
Kjærsgaard A.
Jørgensen KA.
J.
Am. Chem. Soc.
2005,
127:
18296
For a comprehensive review on α-aminoxylation,
see:
<A NAME="RZ10510SS-7E">7e </A>
Merino P.
Tejero T.
Angew. Chem. Int. Ed.
2004,
43:
2995 ; and references cited therein
<A NAME="RZ10510SS-7F">7f </A>
List B.
J.
Am. Chem. Soc.
2002,
124:
5656
<A NAME="RZ10510SS-7G">7g </A>
Zhong G.
Yu Y.
Org. Lett.
2004,
6:
1637
<A NAME="RZ10510SS-7H">7h </A>
Lu M.
Zhu D.
Lu Y.
Hou Y.
Tan B.
Zhong G.
Angew.
Chem. Int. Ed.
2008,
47:
10187
For a review of proline-catalyzed asymmetric reactions,
see:
<A NAME="RZ10510SS-7I">7i </A>
List B.
Tetrahedron
2002,
58:
5573
For reviews on organocatalytic tandem
reactions, see:
<A NAME="RZ10510SS-8A">8a </A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
<A NAME="RZ10510SS-8B">8b </A>
Yu X.
Wang W.
Org. Biomol. Chem.
2008,
6:
2037
<A NAME="RZ10510SS-8C">8c </A>
Walji AM.
MacMillan DWC.
Synlett
2007,
1477
<A NAME="RZ10510SS-9">9 </A>
Kondekar NB.
Kumar P.
Org. Lett.
2009,
11:
2611
<A NAME="RZ10510SS-10A">10a </A>
Bodas MS.
Kumar P.
Tetrahedron
Lett.
2004,
45:
8461
<A NAME="RZ10510SS-10B">10b </A>
Bodas MS.
Kumar P.
J. Org. Chem.
2005,
70:
360
<A NAME="RZ10510SS-10C">10c </A>
Kandula SV.
Kumar P.
Tetrahedron
Lett.
2003,
44:
1957
<A NAME="RZ10510SS-10D">10d </A>
Kandula SV.
Kumar P.
Tetrahedron: Asymmetry
2005,
16:
3268
<A NAME="RZ10510SS-10E">10e </A>
Cherian SK.
Kumar P.
Tetrahedron:
Asymmetry
2007,
18:
982
<A NAME="RZ10510SS-10F">10f </A>
Pandey SK.
Kumar P.
Tetrahedron
Lett.
2005,
46:
4091
<A NAME="RZ10510SS-10G">10g </A>
Kandula SV.
Kumar P.
Tetrahedron:
Asymmetry
2005,
16:
3579
<A NAME="RZ10510SS-11A">11a </A>
Mhaskar SY.
Laxminarayana G.
Tetrahedron
Lett.
1990,
31:
7227
<A NAME="RZ10510SS-11B">11b </A>
Tripathi D.
Pandey SK.
Kumar P.
Tetrahedron
2009,
65:
2226
<A NAME="RZ10510SS-12">12 </A>
The enantiomeric excess (95% ee)
was calculated using Mosher analysis by converting alcohol 8 into the monobenzylated alcohol 23 (Figure
[² ]
)
and then derivatizing alcohol 23 as its
Mosher ester.
<A NAME="RZ10510SS-13">13 </A>
The enantiomeric excess of 18 (95% ee) was calculated using
Mosher analysis by derivatizing alcohol 18 as
its Mosher ester.