Kardiologie up2date 2011; 7(3): 181-198
DOI: 10.1055/s-0030-1256868
Diagnostische Verfahren und Bildgebung

© Georg Thieme Verlag KG Stuttgart · New York

Nicht invasive Diagnostik bei Kardiomyopathien

Ralf  Waßmuth, Christian  Prinz, Lothar  Faber
Further Information

Publication History

Publication Date:
25 October 2011 (online)


Noninvasive cardiac imaging is important in the clinical management of cardiomyopathies. According to the European Society of Cardiology classification of cardiomyopathies we systematically review points to consider and potential pitfalls in the assessment of cardiomyopathy patients by echocardiography and cardiovascular magnetic resonance imaging (CMR). We compare strengths and disadvantages of echo and CMR in various diagnostic settings. In most circumstances complementary use of echocardiography and CMR will be the optimal basis for diagnosis and treatment decisions in dilated, hypertrophic, arrhythmogenic, restrictive, and other cardiomyopathies.


  • 1 Richardson P, McKenna W, Bristow M et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies.  Circulation. 1996;  93 841-842
  • 2 Maron B J, Towbin J A, Thiene G et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention.  Circulation. 2006;  113 1807-1816
  • 3 Elliott P, Andersson B, Arbustini E et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases.  Eur Heart J. 2008;  29 270-276
  • 4 Devereux R B, Roman M J, Paranicas M et al. A population-based assessment of left ventricular systolic dysfunction in middle-aged and older adults: the Strong Heart Study.  Am Heart J. 2001;  141 439-446
  • 5 Buck T, Breithardt O A, Faber L et al. Leitlinie zur Indikation, Durchführung und zum klinischen Stellenwert der Echokardiographie.  Clin Res Cardiol. 2009;  (Suppl. 4) 3-51
  • 6 Cleland J G, Coletta A P, Yassin A et al. Clinical trials update from the European Society of Cardiology Meeting 2009: AAA, RELY, PROTECT, ACTIVE-I, European CRT survey, German pre-SCD II registry, and MADIT-CRT.  Eur J Heart Fail. 2009;  11 1214-1219
  • 7 Hansen A, Haass M, Zugck C et al. Prognostic value of Doppler echocardiographic mitral inflow patterns: implications for risk stratification in patients with chronic congestive heart failure.  J Am Coll Cardiol. 2001;  37 1049-1055
  • 8 Paulus W J, Tschope C, Sanderson J E et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology.  Eur Heart J. 2007;  28 2539-2550
  • 9 Bleeker G B, Steendijk P, Holman E R et al. Assessing right ventricular function: the role of echocardiography and complementary technologies.  Heart. 2006;  92 (Suppl. 1) i19-i26
  • 10 Rahimtoola S H. Concept and evaluation of hibernating myocardium.  Annu Rev Med. 1999;  50 75-86
  • 11 McCrohon J A, Moon J C, Prasad S K et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance.  Circulation. 2003;  108 54-59
  • 12 Assomull R G, Prasad S K, Lyne J et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy.  J Am Coll Cardiol. 2006;  48 1977-1985
  • 13 Lehrke S, Lossnitzer D, Schob M et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy.  Heart. 2011;  97 727-732
  • 14 Chung E S, Leon A R, Tavazzi L et al. Results of the Predictors of Response to CRT (PROSPECT) trial.  Circulation. 2008;  117 2608-2616
  • 15 Faber L, Lamp B, Hering D et al. [Analysis of inter- and intraventricular asynchrony by tissue Doppler echocardiography].  Z Kardiol. 2003;  92 994-1002
  • 16 Breithardt O A, Stellbrink C, Herbots L et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block.  J Am Coll Cardiol. 2003;  42 486-494
  • 17 White J A, Yee R, Yuan X et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony.  J Am Coll Cardiol. 2006;  48 1953-1960
  • 18 Bleeker G B, Kaandorp T A, Lamb H J et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy.  Circulation. 2006;  113 969-976
  • 19 Marsan N A, Westenberg J J, Ypenburg C et al. Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue.  Eur Heart J. 2009;  30 2360-2367
  • 20 Leyva F, Foley P W, Chalil S et al. Cardiac resynchronisation therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance.  J Cardiovasc Magn Reson. 2011;  13 29
  • 21 Delfino J G, Fornwalt B K, Eisner R L et al. Cross-correlation delay to quantify myocardial dyssynchrony from phase contrast magnetic resonance (PCMR) velocity data.  J Magn Reson Imaging. 2008;  28 1086-1091
  • 22 Kuhl U, Pauschinger M, Schwimmbeck P L et al. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction.  Circulation. 2003;  107 2793-2798
  • 23 Staudt A, Bohm M, Knebel F et al. Potential role of autoantibodies belonging to the immunoglobulin G-3 subclass in cardiac dysfunction among patients with dilated cardiomyopathy.  Circulation. 2002;  106 2448-2453
  • 24 ten Berg J, Steggerda R C, Siebelink H M. Myocardial disease: The patient with hypertrophic cardiomyopathy.  Heart. 2010;  96 1764-1772
  • 25 Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies.  N Engl J Med. 2011;  364 1643-1656
  • 26 Maron B J, Gardin J M, Flack J M et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults.  Circulation. 1995;  92 785-789
  • 27 Maron B J, McKenna W J, Danielson G K et al. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines.  Eur Heart J. 2003;  24 1965-1991
  • 28 Elliott P M, Poloniecki J, Dickie S et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients.  J Am Coll Cardiol. 2000;  36 2212-2218
  • 29 Maron B J, Spirito P, Shen W K et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy.  JAMA. 2007;  298 405-412
  • 30 Pelliccia A, Di Paolo F M, Maron B J. The athlete"s heart: remodeling, electrocardiogram and preparticipation screening.  Cardiol Rev. 2002;  10 85-90
  • 31 Pelliccia A, Fagard R, Bjornstad H H et al. Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology.  Eur Heart J. 2005;  26 1422-1445
  • 32 Sipola P, Magga J, Husso M et al. Cardiac MRI assessed left ventricular hypertrophy in differentiating hypertensive heart disease from hypertrophic cardiomyopathy attributable to a sarcomeric gene mutation.  Eur Radiol. 2011;  21 1383-1389
  • 33 Adabag A S, Maron B J, Appelbaum E et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance.  J Am Coll Cardiol. 2008;  51 1369-1374
  • 34 Pieroni M, Chimenti C, Ricci R et al. Early detection of Fabry cardiomyopathy by tissue Doppler imaging.  Circulation. 2003;  107 1978-1984
  • 35 Weidemann F, Breunig F, Beer M et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study.  Circulation. 2003;  108 1299-1301
  • 36 Nagueh S F, McFalls J, Meyer D et al. Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease.  Circulation. 2003;  108 395-398
  • 37 Reckefuss N, Butz T, Horstkotte D, Faber L. Evaluation of longitudinal and radial left ventricular function by two-dimensional speckle-tracking echocardiography in a large cohort of normal probands.  Int J Cardiovasc Imaging. 2011;  27 515-526
  • 38 Serri K, Reant P, Lafitte M et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy.  J Am Coll Cardiol. 2006;  47 1175-1181
  • 39 Nagueh S F, Bierig S M, Budoff M J et al. American society of echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy endorsed by the american society of nuclear cardiology, society for cardiovascular magnetic resonance, and society of cardiovascular computed tomography.  J Am Soc Echocardiogr. 2011;  24 473-498
  • 40 Moon J C, Fisher N G, McKenna W J, Pennell D J. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography.  Heart. 2004;  90 645-649
  • 41 Rickers C, Wilke N M, Jerosch-Herold M et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy.  Circulation. 2005;  112 855-861
  • 42 Maron M S, Finley J J, Bos J M et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy.  Circulation. 2008;  118 1541-1549
  • 43 Desai M Y, Ommen S R, McKenna W J et al. Imaging phenotype versus genotype in hypertrophic cardiomyopathy.  Circ Cardiovasc Imaging. 2011;  4 156-168
  • 44 Minami Y, Kajimoto K, Terajima Y et al. Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy.  J Am Coll Cardiol. 2011;  57 2346-2355
  • 45 Maceira A M, Cosin-Sales J, Roughton M et al. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance.  J Cardiovasc Magn Reson. 2010;  12 65
  • 46 Rubinshtein R, Glockner J F, Ommen S R et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy.  Circ Heart Fail. 2010;  3 51-58
  • 47 Bruder O, Wagner A, Jensen C J et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy.  J Am Coll Cardiol. 2010;  56 875-887
  • 48 O'Hanlon R, Grasso A, Roughton M et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy.  J Am Coll Cardiol. 2010;  56 867-874
  • 49 Bos J M, Theis J L, Tajik A J et al. Relationship between sex, shape, and substrate in hypertrophic cardiomyopathy.  Am Heart J. 2008;  155 1128-1134
  • 50 Mahrholdt H, Wagner A, Judd R M et al. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies.  Eur Heart J. 2005;  26 1461-1474
  • 51 Rudolph A, Abdel-Aty H, Bohl S et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling.  J Am Coll Cardiol. 2009;  53 284-291
  • 52 Petersen S E, Jerosch-Herold M, Hudsmith L E et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging.  Circulation. 2007;  115 2418-2425
  • 53 Schulz-Menger J, Strohm O, Waigand J et al. The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization.  Circulation. 2000;  101 1764-1766
  • 54 Faber L, Seggewiss H, Welge D et al. Echo-guided percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: 7 years of experience.  Eur J Echocardiogr. 2004;  5 347-355
  • 55 Prinz C, Farr M, Hering D et al. The diagnosis and treatment of hypertrophic cardiomyopathy.  Dtsch Arztebl Int. 2011;  108 209-215
  • 56 Butz T, Horstkotte D, Langer C et al. Significant obstruction of the right and left ventricular outflow tract in a patient with biventricular hypertrophic cardiomyopathy.  Eur J Echocardiogr. 2008;  9 344-345
  • 57 Kwon D H, Smedira N G, Thamilarasan M et al. Characteristics and surgical outcomes of symptomatic patients with hypertrophic cardiomyopathy with abnormal papillary muscle morphology undergoing papillary muscle reorientation.  J Thorac Cardiovasc Surg. 2010;  140 317-324
  • 58 Gemayel C, Pelliccia A, Thompson P D. Arrhythmogenic right ventricular cardiomyopathy.  J Am Coll Cardiol. 2001;  38 1773-1781
  • 59 McKenna W J, Thiene G, Nava A et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology.  Br Heart J. 1994;  71 215-218
  • 60 Corrado D, Fontaine G, Marcus F I et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: need for an international registry. European Society of Cardiology and the Scientific Council on Cardiomyopathies of the World Heart Federation.  J Cardiovasc Electrophysiol. 2000;  11 827-832
  • 61 Yoerger D M, Marcus F, Sherrill D et al. Echocardiographic findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia: new insights from the multidisciplinary study of right ventricular dysplasia.  J Am Coll Cardiol. 2005;  45 860-865
  • 62 Marcus F I, McKenna W J, Sherrill D et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria.  Eur Heart J. 2010;  31 806-814
  • 63 Sen-Chowdhry S, Syrris P, Prasad S K et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity.  J Am Coll Cardiol. 2008;  52 2175-2187
  • 64 Pinamonti B, Dragos A M, Pyxaras S A et al. Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry.  Eur Heart J. 2011;  32 1105-1113
  • 65 Heidbuchel H, Hoogsteen J, Fagard R et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification.  Eur Heart J. 2003;  24 1473-1480
  • 66 Vermes E, Strohm O, Otmani A et al. Impact of the revision of arrhythmogenic right ventricular cardiomyopathy/dysplasia task force criteria on its prevalence by CMR criteria.  JACC Cardiovasc Imaging. 2011;  4 282-287
  • 67 Bluemke D A, Krupinski E A, Ovitt T et al. MR Imaging of arrhythmogenic right ventricular cardiomyopathy: morphologic findings and interobserver reliability.  Cardiology. 2003;  99 153-162
  • 68 Tandri H, Saranathan M, Rodriguez E R et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging.  J Am Coll Cardiol. 2005;  45 98-103
  • 69 Hunold P, Wieneke H, Bruder O et al. Late enhancement: a new feature in MRI of arrhythmogenic right ventricular cardiomyopathy?.  J Cardiovasc Magn Reson. 2005;  7 649-655
  • 70 Chatterjee K, Alpert J. Constrictive pericarditis and restrictive cardiomyopathy: similarities and differences.  Heart Fail Monit. 2003;  3 118-126
  • 71 Mogensen J, Kubo T, Duque M et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations.  J Clin Invest. 2003;  111 209-216
  • 72 Piper C, Butz T, Farr M et al. How to diagnose cardiac amyloidosis early: impact of ECG, tissue Doppler echocardiography, and myocardial biopsy.  Amyloid. 2010;  17 1-9
  • 73 Ha J W, Oh J K, Ommen S R et al. Diagnostic value of mitral annular velocity for constrictive pericarditis in the absence of respiratory variation in mitral inflow velocity.  J Am Soc Echocardiogr. 2002;  15 1468-1471
  • 74 Maisch B, Seferovic P M, Ristic A D et al. Guidelines on the diagnosis and management of pericardial diseases executive summary; The Task force on the diagnosis and management of pericardial diseases of the European society of cardiology.  Eur Heart J. 2004;  25 587-610
  • 75 Butz T, Piper C, Langer C et al. Diagnostic superiority of a combined assessment of the systolic and early diastolic mitral annular velocities by tissue Doppler imaging for the differentiation of restrictive cardiomyopathy from constrictive pericarditis.  Clin Res Cardiol. 2010;  99 207-215
  • 76 Comenzo R L, Gertz M A. Autologous stem cell transplantation for primary systemic amyloidosis.  Blood. 2002;  99 4276-4282
  • 77 Jategaonkar S, Butz T, Faber L. [Surgical treatment of the hypereosinophilic syndrome with cardiac involvement (Loffler's endocarditis)].  Dtsch Med Wochenschr. 2008;  133 570-572
  • 78 Khouri S J, Maly G T, Suh D D, Walsh T E. A practical approach to the echocardiographic evaluation of diastolic function.  J Am Soc Echocardiogr. 2004;  17 290-297
  • 79 Oh J K, Hatle L, Tajik A J, Little W C. Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography.  J Am Coll Cardiol. 2006;  47 500-506
  • 80 Lapu-Bula R, Robert A, De Kock M et al. Risk stratification in patients with dilated cardiomyopathy: contribution of Doppler-derived left ventricular filling.  Am J Cardiol. 1998;  82 779-785
  • 81 Maceira A M, Joshi J, Prasad S K et al. Cardiovascular magnetic resonance in cardiac amyloidosis.  Circulation. 2005;  111 186-193
  • 82 Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases.  J Cardiovasc Magn Reson. 2009;  11 14
  • 83 Taylor A M, Dymarkowski S, Verbeken E K, Bogaert J. Detection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results.  Eur Radiol. 2006;  16 569-574
  • 84 Dawson D, Rubens M, Mohiaddin R. Contemporary imaging of the pericardium.  JACC Cardiovasc Imaging. 2011;  4 680-684
  • 85 Pignatelli R H, McMahon C J, Dreyer W J et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy.  Circulation. 2003;  108 2672-2678
  • 86 Engberding R, Stollberger C, Ong P et al. Isolated non-compaction cardiomyopathy.  Dtsch Arztebl Int. 2010;  107 206-213
  • 87 Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity?.  Eur Heart J. 2011;  32 1446-1456
  • 88 Dawson D K, Maceira A M, Raj V J et al. Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance.  Circ Cardiovasc Imaging. 2011;  4 139-146
  • 89 Petersen S E, Selvanayagam J B, Wiesmann F et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging.  J Am Coll Cardiol. 2005;  46 101-105
  • 90 Jacquier A, Thuny F, Jop B et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction.  Eur Heart J. 2010;  31 1098-1104
  • 91 Alsaileek A A, Syed I, Seward J B, Julsrud P. Myocardial fibrosis of left ventricle: magnetic resonance imaging in noncompaction.  J Magn Reson Imaging. 2008;  27 621-624
  • 92 Matsumoto N, Sato Y, Kasama S et al. Myocardial necrosis in both left and right ventricles detected by delayed-enhanced magnetic resonance imaging in a patient with isolated noncompaction of the ventricular myocardium.  Int J Cardiol. 2009;  133 e94-96
  • 93 Probst S, Oechslin E, Schuler P et al. Sarcomere Gene Mutations in Isolated Left Ventricular Noncompaction Cardiomyopathy Do Not Predict Clinical Phenotype.  Circ Cardiovasc Genet. 2011;  4 367-371
  • 94 Schneider B, Athanasiadis A, Schwab J et al. [Clinical spectrum of tako-tsubo cardiomyopathy in Germany: results of the tako-tsubo registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausarzte (ALKK)].  Dtsch Med Wochenschr. 2010;  135 1908-1913
  • 95 Eitel I, Behrendt F, Schindler K et al. Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging.  Eur Heart J. 2008;  29 2651-2659
  • 96 Eitel I, Lucke C, Grothoff M et al. Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging.  Eur Radiol. 2010;  20 422-431

Prof. Dr. L. Faber

Kardiologische Klinik
Herz- und Diabeteszentrum Nordrhein-Westfalen
Ruhr-Universität Bochum

Georgstraße 11

32545 Bad Oeynhausen

Phone: 05731 97–1258

Fax: 05731 97–2194

Email: [email protected]