Semin Liver Dis 2010; 30(2): 117-124
DOI: 10.1055/s-0030-1253221
© Thieme Medical Publishers

Progressive Familial Intrahepatic Cholestasis Type 1

Coen C. Paulusma1 , Ronald P.J. Oude Elferink1 , Peter L.M Jansen1
  • 1Tytgat Institute of Liver and Gastrointestinal Research and Department of Gastroenterology and Liver Disease, Academic Medical Center, Amsterdam, The Netherlands
Further Information

Publication History

Publication Date:
26 April 2010 (online)

ABSTRACT

Progressive familial intrahepatic cholestasis type 1 is a rare genetic liver disease that presents in the first year of life. Bile salts are elevated and these patients are often jaundiced. Despite the cholestasis, serum gamma-glutamyltransferase activity is normal or reduced. Pruritus is a major symptom in these patients. Partial external biliary diversion is helpful in several patients as it reduces the pruritus and postpones or even avoids liver transplantation. The disease is caused by mutations in the gene ATP8B1 that preclude the normal expression of ATP8B1. ATP8B1 is a protein that acts as a lipid flippase, transporting phosphatidylserine from the exoplasmic to the cytoplasmic leaflet of the canalicular membrane of hepatocytes. The authors have shown that the canalicular membrane of ATP8B1-deficient hepatocytes is less stable as evidenced by enhanced extraction of membrane constituents by bile salts. Recent evidence suggests membrane instability in ATP8B1-deficient hair cells of the ear, providing an explanation for hearing loss in ATP8B1 deficiency. Although the exact etiology of cholestasis is incompletely understood, it is hypothesized that ATP8B1 deficiency results in enhanced cholesterol extraction from the canalicular membrane, which impairs the function of the bile salt export pump (BSEP), resulting in cholestasis. Mutations in ATP8B1 also cause benign recurrent intrahepatic cholestasis, a milder variant of the disease characterized by episodes of cholestasis. The onset and resolution of the cholestatic episodes in these patients is still not well understood.

REFERENCES

  • 1 Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis.  Orphanet J Rare Dis. 2009;  4 1
  • 2 Bull L N, van Eijk M J, Pawlikowska L et al.. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis.  Nat Genet. 1998;  18(3) 219-224
  • 3 Bull L N, Juijn J A, Liao M et al.. Fine-resolution mapping by haplotype evaluation: the examples of PFIC1 and BRIC.  Hum Genet. 1999;  104(3) 241-248
  • 4 Klomp L W, Bull L N, Knisely A S et al.. A missense mutation in FIC1 is associated with greenland familial cholestasis.  Hepatology. 2000;  32(6) 1337-1341
  • 5 Eppens E F, van Mil S W, de Vree J M et al.. FIC1, the protein affected in two forms of hereditary cholestasis, is localized in the cholangiocyte and the canalicular membrane of the hepatocyte.  J Hepatol. 2001;  35(4) 436-443
  • 6 van Mil S W, van Oort M M, van den Berg I E, Berger R, Houwen R H, Klomp L W. FIC1 is expressed at apical membranes of different epithelial cells in the digestive tract and is induced in the small intestine during postnatal development of mice.  Pediatr Res. 2004;  56(6) 981-987
  • 7 Klomp L W, Vargas J C, van Mil S W et al.. Characterization of mutations in ATP8B1 associated with hereditary cholestasis.  Hepatology. 2004;  40(1) 27-38
  • 8 Oshima T, Ikeda K, Takasaka T. Sensorineural hearing loss associated with Byler disease.  Tohoku J Exp Med. 1999;  187(1) 83-88
  • 9 Bull L N, Carlton V E, Stricker N L et al.. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity.  Hepatology. 1997;  26(1) 155-164
  • 10 Bustorff-Silva J, Sbraggia Neto L, Olímpio H et al.. Partial internal biliary diversion through a cholecystojejunocolonic anastomosis—a novel surgical approach for patients with progressive familial intrahepatic cholestasis: a preliminary report.  J Pediatr Surg. 2007;  42(8) 1337-1340
  • 11 Egawa H, Yorifuji T, Sumazaki R, Kimura A, Hasegawa M, Tanaka K. Intractable diarrhea after liver transplantation for Byler's disease: successful treatment with bile adsorptive resin.  Liver Transpl. 2002;  8(8) 714-716
  • 12 Tygstrup N, Steig B A, Juijn J A, Bull L N, Houwen R H. Recurrent familial intrahepatic cholestasis in the Faeroe Islands. Phenotypic heterogeneity but genetic homogeneity.  Hepatology. 1999;  29(2) 506-508
  • 13 Lykavieris P, van Mil S, Cresteil D et al.. Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation.  J Hepatol. 2003;  39(3) 447-452
  • 14 Miyagawa-Hayashino A, Egawa H, Yorifuji T et al.. Allograft steatohepatitis in progressive familial intrahepatic cholestasis type 1 after living donor liver transplantation.  Liver Transpl. 2009;  15(6) 610-618
  • 15 van Berge Henegouwen G P, Brandt K H, de Pagter A G. Is an acute disturbance in hepatic transport of bile-acids the primary cause of cholestasis in benign recurrent intrahepatic cholestasis?.  Lancet. 1974;  1(7869) 1249-1251
  • 16 Schmeisser W, Eggstein M, Maulbetsch R, Dölle W. [A case of benign recurring intrahepatic cholestasis (Tygstrup-Summerskill and Walshe syndrome)].  Schweiz Med Wochenschr. 1977;  107(45) 1613-1620
  • 17 Stapelbroek J M, van Erpecum K J, Klomp L W et al.. Nasobiliary drainage induces long-lasting remission in benign recurrent intrahepatic cholestasis.  Hepatology. 2006;  43(1) 51-53
  • 18 de Pagter A G, van Berge Henegouwen G P, ten Bokkel Huinink J A, Brandt K H. Familial benign recurrent intrahepatic cholestasis. Interrelation with intrahepatic cholestasis of pregnancy and from oral contraceptives?.  Gastroenterology. 1976;  71(2) 202-207
  • 19 Müllenbach R, Bennett A, Tetlow N et al.. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy.  Gut. 2005;  54(6) 829-834
  • 20 Folmer D E, Elferink R P, Paulusma C C. P4 ATPases - lipid flippases and their role in disease.  Biochim Biophys Acta. 2009;  1791(7) 628-635
  • 21 Holthuis J C, Levine T P. Lipid traffic: floppy drives and a superhighway.  Nat Rev Mol Cell Biol. 2005;  6(3) 209-220
  • 22 Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement.  Biochem J. 1993;  294(Pt 1) 1-14
  • 23 Devaux P F, López-Montero I, Bryde S. Proteins involved in lipid translocation in eukaryotic cells.  Chem Phys Lipids. 2006;  141(1-2) 119-132
  • 24 Paulusma C C, Oude Elferink R P. Diseases of intramembranous lipid transport.  FEBS Lett. 2006;  580(23) 5500-5509
  • 25 Ujhazy P, Ortiz D, Misra S et al.. Familial intrahepatic cholestasis 1: studies of localization and function.  Hepatology. 2001;  34(4 Pt 1) 768-775
  • 26 Paulusma C C, Folmer D E, Ho-Mok K S et al.. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity.  Hepatology. 2008;  47(1) 268-278
  • 27 Cai S Y, Gautam S, Nguyen T, Soroka C J, Rahner C, Boyer J L. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained.  Gastroenterology. 2009;  136(3) 1060-1069
  • 28 Nibbering C P, Groen A K, Ottenhoff R, Brouwers J F, vanBerge-Henegouwen G P, van Erpecum K J. Regulation of biliary cholesterol secretion is independent of hepatocyte canalicular membrane lipid composition: a study in the diosgenin-fed rat model.  J Hepatol. 2001;  35(2) 164-169
  • 29 Amigo L, Mendoza H, Zanlungo S et al.. Enrichment of canalicular membrane with cholesterol and sphingomyelin prevents bile salt-induced hepatic damage.  J Lipid Res. 1999;  40(3) 533-542
  • 30 Oude Elferink R PJ, Paulusma C C, Groen A K. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases.  Gastroenterology. 2006;  130(3) 908-925
  • 31 Pawlikowska L, Groen A, Eppens E F et al.. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion.  Hum Mol Genet. 2004;  13(8) 881-892
  • 32 Paulusma C C, Groen A, Kunne C et al.. ATP8B1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport.  Hepatology. 2006;  44(1) 195-204
  • 33 Groen A, Kunne C, Jongsma G et al.. ABCG5/8 independent biliary cholesterol excretion in ATP8B1-deficient mice.  Gastroenterology. 2008;  134(7) 2091-2100
  • 34 Paulusma C C, de Waart D R, Kunne C, Mok K S, Elferink R P. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content.  J Biol Chem. 2009;  284(15) 9947-9954
  • 35 Alvarez L, Jara P, Sánchez-Sabaté E et al.. Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1.  Hum Mol Genet. 2004;  13(20) 2451-2460
  • 36 Chen F, Ananthanarayanan M, Emre S et al.. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity.  Gastroenterology. 2004;  126(3) 756-764
  • 37 Chen F, Ellis E, Strom S C, Shneider B L. ATPase class I type 8B member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes.  Pediatr Res. 2010;  67(2) 183-187
  • 38 Frankenberg T, Miloh T, Chen F Y et al.. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor.  Hepatology. 2008;  48(6) 1896-1905
  • 39 Koh S, Takada T, Kukuu I, Suzuki H. FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells.  J Gastroenterol. 2009;  44(6) 592-600
  • 40 Martínez-Fernández P, Hierro L, Jara P, Alvarez L. Knockdown of ATP8B1 expression leads to specific downregulation of the bile acid sensor FXR in HepG2 cells: effect of the FXR agonist GW4064.  Am J Physiol Gastrointest Liver Physiol. 2009;  296(5) G1119-G1129
  • 41 Demeilliers C, Jacquemin E, Barbu V et al.. Altered hepatobiliary gene expressions in PFIC1: ATP8B1 gene defect is associated with CFTR downregulation.  Hepatology. 2006;  43(5) 1125-1134
  • 42 Inagaki T, Choi M, Moschetta A et al.. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis.  Cell Metab. 2005;  2(4) 217-225
  • 43 Folmer D E, van der Mark V A, Ho-Mok K S, Oude Elferink R P, Paulusma C C. Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1.  Hepatology. 2009;  50(5) 1597-1605
  • 44 van der Velden L M, Stapelbroek J M, Krieger E et al.. Folding defects in P-type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4-phenylbutyrate.  Hepatology. 2010;  51(1) 286-296
  • 45 Elferink M G, Olinga P, Draaisma A L et al.. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(5) G1008-G1016
  • 46 Geier A, Dietrich C G, Voigt S et al.. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver.  Am J Physiol Gastrointest Liver Physiol. 2005;  289(5) G831-G841
  • 47 Siewert E, Dietrich C G, Lammert F et al.. Interleukin-6 regulates hepatic transporters during acute-phase response.  Biochem Biophys Res Commun. 2004;  322(1) 232-238
  • 48 Stapelbroek J M, Peters T A, van Beurden D H et al.. ATP8B1 is essential for maintaining normal hearing.  Proc Natl Acad Sci U S A. 2009;  106(24) 9709-9714

Peter L.M JansenM.D. Ph.D. 

Department of Gastroenterology and Liver Disease, Academic Medical Center

Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands

Email: p.l.jansen@amc.uva.nl

    >