Klinische Neurophysiologie 2010; 41(2): 131-136
DOI: 10.1055/s-0030-1252032
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Die Verlockung des Unbekannten: Neuheitsbezogene motivationale Aspekte explorativen Verhaltens und dessen Implikationen für neuronale Plastizität im Alter

The Lure of the Unknown: Novelty-Related Motivational Aspects of Explorative Behaviour and their Implications for Neuronal Plasticity in Old AgeE. Düzel1 , 2
  • 1Institut für Kognitive Neurologie und Demenzforschung, Otto von Guericke Universität, Magdeburg
  • 2Deutsches Zentrum für Neurodegenerative Erkrankungen – Magdeburg, Otto von Guericke Universität Magdeburg Institute of Cognitive Neuroscience, University College London, London, UK
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. Juni 2010 (online)

Zusammenfassung

Dopaminerge Neuromodulation verbessert das Langzeitgedächtnis für neue Ereignisse und hat motivational aktivierende Effekte auf Mobilität. Eine altersbedingte Degeneration der Substantia Nigra/Area tegmentalis ventralis (SN/VTA), Hauptursprung dopaminerger Projektionen im zentralen Nervensystem, hat daher negative Auswirkungen auf das Langzeitgedächtnis und auf motivationale Aspekte von Mobilität. Diese Zusammenhänge werden im sog. NOMAD (Neuheit-bezogene Motivation von Antizipation und Exploration durch Dopamin) Modell zusammengefasst. Das NOMAD Modell stellt eine Beziehung zwischen Neuheit, Langzeitgedächtnis, Motivierung explorativen Verhaltens und Gedächtnisproblemen im Alter her. Im Rahmen dieses Modells sind dopaminerge Motivierung explorativen Verhaltens (und dadurch die häufige Exposition zu Neuheit) sowie die dopamin-abhängige Verbesserung von Langzeitgedächtnis, wichtige Ansatzpunkte, um neuronale Plastizität anzuregen und die alters-abhängige Verschlechterung von Gedächtnisfunktionen sowie deren Progression zu einer Demenz zu verlangsamen.

Abstract

Dopaminergic neuromodulation improves long-term memory for new events (novelty) and also has a motivationally energizing effect on mobility. An age-related degeneration of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic projections in the central nervous system, thus has a negative impact on long-term memory and on motivational aspects of mobility. These aspects of dopaminergic function are summarised in the so-called NOMAD (novelty-related motivation of anticipation and exploration through dopamine) model. The NOMAD model provides a relationship between memory problems in old age and the roles that dopamine plays in regulating novelty-processing, longterm memory and motivational aspects of explorative behaviour. Within the framework of this model, the dopaminergic motivation of explorative behaviour (and thus the frequent exposure to novelty) and the dopamine-dependent improvement of long-term memory are important starting points for promoting neuronal plasticity in memory relevant structures (hippocampus) and thus are likely to play a key role in slowing down age-related memory decline and its progression to dementia.

Literatur

  • 1 Pessiglione M, Seymour B, Flandin G. et al . Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans.  Nature. 2006;  442 1042-1045
  • 2 Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory.  Annu Rev Neurosci. 2006;  29 565-598
  • 3 Robbins TW, Everitt BJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006).  Psychopharmacology (Berl). 2007;  191 433-437
  • 4 Berridge KC. Motivation concepts in behavioral neuroscience.  Physiol Behav. 2004;  81 179-209
  • 5 Robinson TE, Flagel SB. Dissociating the Predictive and Incentive Motivational Properties of Reward-Related Cues Through the Study of Individual Differences.  Biol Psychiatry. 2008; 
  • 6 Niv Y, Joel D, Dayan P. A normative perspective on motivation.  Trends Cogn Sci. 2006;  10 375-381
  • 7 Niv Y, Daw ND, Joel D. et al . Tonic dopamine: opportunity costs and the control of response vigor.  Psychopharmacology (Berl). 2007;  191 507-520
  • 8 Lisman JE, Grace AA. The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory.  Neuron. 2005;  46 703-713
  • 9 Frey S, Frey JU. ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. In: Sossin  WS J-CL, Castellucci VF, &, Belleville S, ed Progress in Brain Research: Elsevier; 2008
  • 10 Duzel E, Vargha-Khadem F, Heinze HJ. et al . Brain activity evidence for recognition without recollection after early hippocampal damage.  Proc Natl Acad Sci USA. 2001;  98 8101-8106
  • 11 Mishkin M, Vargha-Khadem F, Gadian DG. Amnesia and the organization of the hippocampal system.  Hippocampus. 1998;  8 212-216
  • 12 O’Carroll CM, Martin SJ, Sandin J. et al . Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory.  Learn Mem. 2006;  13 760-769
  • 13 Frey U, Morris RG. Synaptic tagging and long-term potentiation [see comments].  Nature. 1997;  385 533-536
  • 14 Grace AA, Floresco SB, Goto Y. et al . Regulation of firing of dopaminergic neurons and control of goal-directed behaviors.  Trends Neurosci. 2007; 
  • 15 Duzel E, Habib R, Rotte M. et al . Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations.  J Neurosci. 2003;  23 9439-9444
  • 16 Schultz W. Predictive reward signal of dopamine neurons.  J Neurophysiol. 1998;  80 1-27
  • 17 Reed P, Mitchell C, Nokes T. Intrinsic reinforcing properties of putatively neutral stimuli in an instrumental two-lever discrimination task.  Animal Learning & Behavior. 1996;  24 38-45
  • 18 Kakade S, Dayan P. Dopamine: generalization and bonuses.  Neural Netw. 2002;  15 549-559
  • 19 Schott BH, Sellner DB, Lauer CJ. et al . Activation of midbrain structures by associative novelty and the formation of explicit memory in humans.  Learn Mem. 2004;  11 383-387
  • 20 Bunzeck N, Duzel E. Absolute coding of stimulus novelty in the human substantia nigra/VTA.  Neuron. 2006;  51 369-379
  • 21 Krebs RM, Schott BH, Schutze H. et al . The novelty exploration bonus and its attentional modulation.  Neuropsychologia. 2009;  47 2272-2281
  • 22 Krebs RM, Schott BH, Duzel E. Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area.  Biol Psychiatry. 2009;  65 103-110
  • 23 Wittmann BC, Bunzeck N, Dolan RJ. et al . Anticipation of novelty recruits reward system and hippocampus while promoting recollection.  Neuroimage. 2007;  38 194-202
  • 24 Duzel S, Schutze H, Stallforth S. et al . A close relationship between verbal memory and SN/VTA integrity in young and older adults.  Neuropsychologia. 2008;  46 3042-3052
  • 25 Panksepp J. Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press; 1998
  • 26 Knutson B, Cooper JC. The lure of the unknown.  Neuron. 2006;  51 280-282
  • 27 Sutton RS, Barto AG. Reinforcement Learning. Cambridge, MA: MIT Press; 1998
  • 28 Berridge KC. The debate over dopamine's role in reward: the case for incentive salience.  Psychopharmacology (Berl). 2007;  191 391-431
  • 29 Wittmann BC, Daw ND, Seymour B. et al . Striatal activity underlies novelty-based choice in humans.  Neuron. 2008;  58 967-973
  • 30 Cardinal RN, Parkinson JA, Hall J. et al . Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex.  Neurosci Biobehav Rev. 2002;  26 321-352
  • 31 Squire LR, Stark CE, Clark RE. The medial temporal lobe.  Annu Rev Neurosci. 2004;  27 279-306
  • 32 McGaugh JL. Emotional arousal and enhanced amygdala activity: new evidence for the old perseveration-consolidation hypothesis.  Learn Mem. 2005;  12 77-79
  • 33 Davis CD, Jones FL, Derrick BE. Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus.  J Neurosci. 2004;  24 6497-6506
  • 34 Sajikumar S, Frey JU. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD.  Neurobiol Learn Mem. 2004;  82 12-25
  • 35 Li S, Cullen WK, Anwyl R. et al . Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty.  Nat Neurosci. 2003;  6 526-531
  • 36 Straube T, Korz V, Balschun D. et al . Requirement of beta-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus.  J Physiol. 2003;  552 953-960
  • 37 Frey U, Morris RG. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation.  Trends Neurosci. 1998;  21 181-188
  • 38 Frey JU. Cell polarity and subcellular RNA localization. Berlin-Heidelberg: Springer-Verlag; 2001
  • 39 Govindarajan A, Kelleher RJ, Tonegawa S. A clustered plasticity model of long-term memory engrams.  Nat Rev Neurosci. 2006;  7 575-583
  • 40 Floresco SB, West AR, Ash B. et al . Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.  Nat Neurosci. 2003;  6 968-973
  • 41 Bunzeck N, Duzel E. Absolute stimulus-novelty is coded by the human substantia nigra/VTA.  Neuron. 2006;  3 369-379
  • 42 Fenker DB, Frey JU, Schuetze H. et al . Novel Scenes Improve Recollection and Recall of Words.  J Cogn Neurosci. 2008; 
  • 43 Backman L, Nyberg L, Lindenberger U. et al . The correlative triad among aging, dopamine, and cognition: current status and future prospects.  Neurosci Biobehav Rev. 2006;  30 791-807
  • 44 Rinne JO, Lonnberg P, Marjamaki P. Age-dependent decline in human brain dopamine D1 and D2 receptors.  Brain Res. 1990;  508 349-352
  • 45 Seeman P, Bzowej NH, Guan HC. et al . Human brain dopamine receptors in children and aging adults.  Synapse. 1987;  1 399-404
  • 46 Cortes R, Gueye B, Pazos A. et al . Dopamine receptors in human brain: autoradiographic distribution of D1 sites.  Neuroscience. 1989;  28 263-273
  • 47 Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity.  Brain. 1991;  114 (Pt 5) 2283-2301
  • 48 Snow BJ, Tooyama I, McGeer EG. et al . Human positron emission tomographic [18F] fluorodopa studies correlate with dopamine cell counts and levels.  Ann Neurol. 1993;  34 324-330
  • 49 Bäckman L, Ginovart N, Dixon AR. et al . Age-Related Cognitive Deficits Mediated by Changes in the Striatal Dopamine System.  Am J Psychiatry. 2000;  157 635-637
  • 50 Bunzeck N, Schutze H, Stallforth S. et al . Mesolimbic novelty processing in older adults.  Cereb Cortex. 2007;  17 2940-2948
  • 51 Gould E. How widespread is adult neurogenesis in mammals?.  Nat Rev Neurosci. 2007;  8 481-488
  • 52 Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation.  Trends Neurosci. 2007;  30 464-472
  • 53 Freundlieb N, Francois C, Tande D. et al . Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates.  J Neurosci. 2006;  26 2321-2325
  • 54 Lundin-Olsson L, Nyberg L, Gustafson Y. “Stops walking when talking” as a predictor of falls in elderly people.  Lancet. 1997;  349 617
  • 55 Buchman AS, Wilson RS, Boyle PA. et al . Grip strength and the risk of incident Alzheimer's disease.  Neuroepidemiology. 2007;  29 66-73
  • 56 Boyle PA, Wilson RS, Aggarwal NT. et al . Parkinsonian signs in subjects with mild cognitive impairment.  Neurology. 2005;  65 1901-1906
  • 57 Boyle PA, Wilson RS, Buchman AS. et al . Lower extremity motor function and disability in mild cognitive impairment.  Exp Aging Res. 2007;  33 355-371
  • 58 Ruprecht-Dorfler P, Klotz P, Becker G. et al . Substantia nigra hyperechogenicity correlates with subtle motor dysfunction in tap dancers.  Parkinsonism Relat Disord. 2007;  13 362-364
  • 59 Ross GW, Petrovitch H, Abbott RD. et al . Parkinsonian signs and substantia nigra neuron density in decendents elders without PD.  Ann Neurol. 2004;  56 532-539
  • 60 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease.  Ann N Y Acad Sci. 2008;  1124 1-38
  • 61 Nestor PJ, Fryer TD, Ikeda M. et al . Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease).  Eur J Neurosci. 2003;  18 2663-2667
  • 62 Li KZ, Lindenberger U. Relations between aging sensory/sensorimotor and cognitive functions.  Neurosci Biobehav Rev. 2002;  26 777-783
  • 63 Draganski B, Gaser C, Busch V. et al . Neuroplasticity: changes in grey matter induced by training.  Nature. 2004;  427 311-312
  • 64 Brayne C. The elephant in the room – healthy brains in later life, epidemiology and public health.  Nat Rev Neurosci. 2007;  8 233-239
  • 65 Mesulam M. The cholinergic lesion of Alzheimer's disease: pivotal factor or side show?.  Learn Mem. 2004;  11 43-49
  • 66 Smiley JF, Subramanian M, Mesulam MM. Monoaminergic-cholinergic interactions in the primate basal forebrain.  Neuroscience. 1999;  93 817-829
  • 67 Duzel E, Bunzeck N, Guitart-Masip M. et al . Functional imaging of the human dopaminergic midbrain.  Trends Neurosci. 2009;  32 321-328

Korrespondenzadresse

Prof. Dr. med. Emrah Düzel

Institut für Kognitive

Neurologie und

Demenzforschung

Medizinische Fakultät

Otto von Guericke Universität

Leipziger Straße 44

39120 Magdeburg

eMail: e.duzel@ucl.ac.uk

    >