Klinische Neurophysiologie 2010; 41(2): 137-146
DOI: 10.1055/s-0030-1252031
Originals

© Georg Thieme Verlag KG Stuttgart · New York

Prestimulus Neural Oscillations and their Haemodynamic Correlates Elucidate the Cognitive and Neural Processes of Memory Formation

Prästimulusoszillationen und deren hämodynamische Korrelate geben Einblick in die kognitiven und neuronalen Prozesse der GedächtnisbildungA. Richardson-Klavehn1
  • 1Arbeitsgruppe Gedächtnis und Bewusstsein, Universitätsklinik für Neurologie, Magdeburg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. Juni 2010 (online)

Abstract

Here I review recent functional neuroimaging data from colleagues and myself addressing the cognitive and neural basis of memory formation (encoding) in healthy human research participants using both electrophysiological and haemodynamic measurements. The data indicate an important role for prestimulus oscillations in memory encoding both in relation to later conscious episodic recollection and in relation to later perceptual-lexical repetition priming. These findings advance theoretical understanding of memory formation at both cognitive and neural theoretical levels and suggest new avenues for the use of functional neuroimaging in understanding deficits in conscious episodic recollection and repetition priming in neurological and psychiatric patient populations with memory disorders.

Zusammenfassung

Im Folgenden gebe ich einen Überblick über die Beiträge von Kollegen sowie meine eigenen Arbeiten zu den kognitiven und neuronalen Grundlagen der Gedächtnisbildung (Enkodierung) bei gesunden Probanden, untersucht mit Hilfe elektrophysiologischer und hämodynamischer bildgebender Verfahren. Die Daten weisen auf eine zentrale Rolle von Prästimulusoszillationen bei der Enkodierung ins Langzeitgedächtnis hin, nicht nur für späteres bewusstes Erinnern, sondern auch für späteres perzeptuell-lexikalisches Priming. Die Befunde tragen einerseits zu einem besseren Verständnis der Entstehung von Gedächtnisinhalten auf kognitiver und neuronaler Ebene bei. Andererseits zeigen sie aber auch neue Wege auf, wie die funktionelle Bildgebung zur Erforschung von Defiziten des bewussten Erinnerns und des Primings in neurologischen und psychiatrischen Populationen eingesetzt werden kann.

Literatur

  • 1 Hodges JR. Memory in the dementias. In: E. Tulving & F. I. M. Craik (Eds.), Oxford handbook of memory New York: Oxford University Press; 2000: 441-464
  • 2 Anderson ND, Craik FIM. Memory in the aging brain. In: E. Tulving & F. I. M. Craik (Eds.), Oxford handbook of memory. New York: Oxford University Press; 2000: 411-426
  • 3 Shallice T. Functional imaging and neuropsychology findings: How can they be linked?.  NeuroImage. 2003;  20 (Supplement 1) S146-S154
  • 4 Crowder RG. Principles of learning and memory.  Hillsdale, NJ: Erlbaum. 1976; 
  • 5 Richardson-Klavehn A, Bjork RA. Memory, long-term. In: L. Nadel (Ed.), Encyclopedia of cognitive science (Vol. 2, pp. 1096–1105) London, UK: Nature Publishing Group;
  • 6 Henson RNA. What can functional neuroimaging tell the experimental psychologist?.  Quarterly Journal of Experimental Psychology. 2005;  58A 193-233
  • 7 Henson RNA. Forward inference using functional neuroimaging: Dissociations versus associations.  Trends in Cognitive Sciences. 2006;  10 64-69
  • 8 Poldrack RA. Can cognitive processes be inferred from neuroimaging data?.  Trends in Cognitive Sciences. 2006;  10 59-63
  • 9 Richardson-Klavehn A, Bergström ZM, Magno E. et al .On the intimate relationship between neurobiology and function in the theoretical analysis of human learning and memory. In: F. Rösler, C. Ranganath, B. Röder, & R. H. Kluwe (Eds.), Neuroimaging of human memory: Linking cognitive processes to neural systems (pp. 127–165) New York: Oxford University Press; 2009
  • 10 Bransford JD, Franks JJ, Morris CD, Stein BS. Some general constraints on learning and memory research. In: L. S. Cermak & F. I. M. Craik (Eds.), Levels of processing in human memory (pp. 331–354). Hillsdale, NJ: Erlbaum; 1979
  • 11 Craik FIM. Levels of processing: Past, present…and future?.  Memory. 2002;  10 305-318
  • 12 Kolers PA, Roediger III HL. Procedures of mind.  Journal of Verbal Learning and Verbal Behavior. 1984;  23 425-449
  • 13 Lockhart RS. Levels of processing, transfer-appropriate processing, and the concept of robust encoding.  Memory. 2002;  10 397-403
  • 14 Roediger III HL, Gallo DA, Geraci L. Processing approaches to cognition: The impetus from the levels-of-processing framework.  Memory. 2002;  10 319-332
  • 15 Brown SC, Craik FIM. Encoding and retrieval of information. In: E. Tulving & F. I. M. Craik (Eds.), Oxford handbook of memory (pp. 93–107). New York: Oxford University Press; 2000
  • 16 Richardson-Klavehn A, Bjork RA. Measures of memory.  Annual Review of Psychology. 1988;  39 475-543
  • 17 Roediger III HL, McDermott KB. Implicit memory in normal human subjects. In: F. Boller and J. Grafman (Eds.), Handbook of neuropsychology (Vol. 8, pp. 63–131). Amsterdam, Netherlands: Elsevier; 1993
  • 18 Fenker DB, Schott BH, Richardson-Klavehn A. et al . Recapitulating emotional context: Activity of amygdala, hippocampus and fusiform cortex during recollection and familiarity.  European Journal of Neuroscience. 2005;  21 1993-1999
  • 19 Johnson JD, Rugg MD. Recollection and the reinstatement of encoding-related cortical activity.  Cerebral Cortex. 2007;  17 2507-2515
  • 20 Khader P, Rösler F. Content specificity of long-term memory representations. In: F. Rösler, C. Ranganath, B. Röder, & R. H. Kluwe (Eds.), Neuroimaging of human memory: Linking cognitive processes to neural systems (pp. 283–298). New York: Oxford University Press; 2009
  • 21 Nyberg L. Levels of processing: A view from functional brain imaging.  Memory. 2002;  10 345-348
  • 22 Rugg MD, Johnson JD, Park H. et al .Encoding-retrieval overlap in human episodic memory: A functional neuroimaging perspective. In: W. S. Sossin, J.-C. Lacaille, V. F. Castellucci & S. Belleville (Eds.), Progress in brain research (Vol. 169, pp. 339–352). Amsterdam, Netherlands: Elsevier; 2008
  • 23 Cipolotti L, Bird CM. Amnesia and the hippocampus.  Current Opinion in Neurology. 2006;  19 593-598
  • 24 Mayes A. Selective memory disorders. In: E. Tulving & F. I. M. Craik (Eds.), Oxford handbook of memory (pp. 427–440). New York: Oxford University Press; 2000
  • 25 Squire LR. Memory systems of the brain: A brief history and current perspective.  Neurobiology of Learning and Memory. 2004;  82 171-177
  • 26 Squire LR, Stark CE, Clark RE. The medial temporal lobe.  Annual Review of Neuroscience. 2004;  27 279-306
  • 27 Moscovitch M. Memory and working-with-memory: A component process model based on modules and central systems.  Journal of Cognitive Neuroscience. 1992;  4 257-267
  • 28 Moscovitch M. Theories of memory and consciousness. In: E. Tulving & F. I. M. Craik (Eds.), Oxford handbook of memory (pp. 609–626). New York: Oxford University Press; 2000
  • 29 Moscovitch M. The hippocampus as a “stupid”, domain-specific module: Implications for theories of recent and remote memory, and of imagination.  Canadian Journal of Experimental Psychology. 2008;  62 62-79
  • 30 Tulving E. Does memory encoding exist?. In: M. Naveh-Benjamin, M. Moscovitch, & H. L. Roediger III (Eds.), Perspectives on human memory and cognitive aging: Essays in honor of Fergus Craik (pp. 6–27). New York: Psychology Press; 2001
  • 31 Guderian S, Schott BH, Richardson-Klavehn A. et al . Medial temporal theta state before an event predicts episodic encoding success in humans.  Proceedings of the National Academy of Sciences USA. 2009;  106 5365-5370
  • 32 Düzel E, Guderian S. Oscillatory and haemodynamic temporal responses preceding stimulus onset modulate episodic memory. In: F. Rösler, C. Ranganath, B. Röder, & R. H. Kluwe (Eds.), Neuroimaging of human memory: Linking cognitive processes to neural systems (pp. 427–442). New York: Oxford University Press; 2009
  • 33 Schott BH, Seidenbecher CI, Fenker DB. et al . The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging.  Journal of Neuroscience. 2006;  26 1407-1417
  • 34 Osipova D, Takashima A, Oostenveld R. et al . Theta and gamma oscillations predict encoding and retrieval of declarative memory.  Journal of Neuroscience. 2006;  26 7523-7631
  • 35 Sederberg PB, Kahana MJ, Howard MW. et al . Theta and gamma oscillations during encoding predict subsequent recall.  Journal of Neuroscience. 2003;  23 10809-10814
  • 36 Guderian S, Düzel E. Induced theta oscillations mediate large-scale synchrony with mediotemporal areas during recollection in humans.  Hippocampus. 2005;  15 901-912
  • 37 Buzsáki G. Rhythms of the brain. New York: Oxford University Press; 2006
  • 38 Kahana MJ. The cognitive correlates of human brain oscillations.  Journal of Neuroscience. 2006;  26 1669-1672
  • 39 Kirov R, Weiss C, Siebner HR. et al . Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding.  Proceedings of the National Academy of Sciences USA. 2009;  106 15460-15465
  • 40 Sejnowski TJ, Paulsen O. Network oscillations: Emerging computational principles.  Journal of Neuroscience. 2006;  26 1673-1676
  • 41 Bauer H, Nirnberger G. Paired associate learning with feedback of DC potential shifts of the cerebral cortex.  Archiv für Psychologie (Archive for Psychology). 1980;  132 237-239
  • 42 Stam C, van der Made Y, Pijnenburg Y. et al . EEG synchronization in mild cognitive impairment and Alzheimer's disease.  Acta Neurologica Scandinavica. 2003;  108 90-96
  • 43 Paller KA, Wagner AD. Observing the transformation of experience into memory.  Trends in Cognitive Sciences. 2002;  6 93-102
  • 44 Spaniol J, Davidson PSR, Kim ASN. et al . Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation.  Neuropsychologia. 2009;  47 1765-1779
  • 45 Uncapher MR, Wagner AD. Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory.  Neurobiology of Learning and Memory. 2009;  91 139-154
  • 46 Schott BH, Richardson-Klavehn A, Heinze H-J. et al . Perceptual priming versus explicit memory: Dissociable neural correlates at encoding.  Journal of Cognitive Neuroscience. 2002;  14 578-592
  • 47 Schott BH, Richardson-Klavehn A, Henson RNA. et al . Neuroanatomical dissociation of encoding processes related to priming and explicit memory.  Journal of Neuroscience. 2006;  26 792-800
  • 48 Otten LJ, Quayle AH, Akram S. et al . Brain activity before an event predicts later recollection.  Nature Neuroscience. 2006;  9 489-491
  • 49 Richardson-Klavehn A. Priming, automatic recollection, and control of retrieval: Toward an integrative retrieval architecture. In: J. H. Mace (Ed.), The act of remembering (in press). New York: Wiley-Blackwell; 2010
  • 50 Richardson-Klavehn A, Gardiner JM. Retrieval volition and memorial awareness in stem completion: An empirical analysis.  Psychological Research. 1995;  57 166-178
  • 51 Richardson-Klavehn A, Gardiner JM, Java RI. Involuntary conscious memory and the method of opposition.  Memory. 1994;  2 1-29
  • 52 Paller KA, Hutson CA, Miller BB. et al . Neural manifestations of memory with and without awareness.  Neuron. 2003;  38 507-516
  • 53 Voss JL, Paller KA. Brain substrates of implicit and explicit memory: The importance of concurrently acquired neural signals of both memory types.  Neuropsychologia. 2008;  46 3021-3029
  • 54 Paller KA, Voss JL, Westerberg CE. Memory and the awareness of remembering. In: F. Rösler, C. Ranganath, B. Röder, & R. H. Kluwe (Eds.), Neuroimaging of human memory: Linking cognitive processes to neural systems (pp. 383–403). New York: Oxford University Press;
  • 55 Friedman D, Ritter W, Snodgrass JG. ERPs during study as a function of subsequent direct and indirect memory testing in young and old adults.  Cognitive Brain Research. 1996;  4 1-13
  • 56 Paller KA. Recall and stem-completion priming have different electrophysiological correlates and are modified differentially by directed forgetting.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1990;  16 1021-1032
  • 57 Paller KA, Kutas M. Brain potentials during memory retrieval provide neurophysiological support for the distinction between conscious recollection and priming.  Journal of Cognitive Neuroscience. 1992;  4 375-391
  • 58 Curran T. The electrophysiology of incidental and intentional retrieval: ERP old/new effects in lexical decision and recognition memory.  Neuropsychologia. 1999;  37 771-785
  • 59 Richardson-Klavehn A, Gardiner JM, Ramponi C. Level of processing and the process-dissociation procedure: Elusiveness of null effects on estimates of automatic retrieval.  Memory. 2002;  10 349-364
  • 60 Schacter DL. Implicit memory: History and current status.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1987;  13 501-518
  • 61 Rugg MD. ERP studies of memory. In: M. D. Rugg & M. G. H. Coles (Eds.), Electrophysiology of mind: Event-related brain potentials and cognition (pp. 132–170). Oxford, UK: Oxford University Press; 1995
  • 62 Schacter DL, Buckner RL. On the relations among priming, conscious recollection, and intentional retrieval: Evidence from neuroimaging research.  Neurobiology of Learning and Memory. 1998l;  70 284-303
  • 63 Schott BH, Henson RNA, Richardson-Klavehn A. et al . Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval.  Proceedings of the National Academy of Sciences USA. 2005;  102 1257-1262
  • 64 Richardson-Klavehn A, Gardiner JM,. Java RI. Memory: Task dissociations, process dissociations and dissociations of consciousness. In: G. Underwood (Ed.), Implicit cognition (pp. 85–158). Oxford, UK: Oxford University Press;
  • 65 Richardson-Klavehn A, Gardiner JM. Cross-modality priming reflects conscious memory, but not voluntary memory.  Psychonomic Bulletin and Review. 1996;  3 238-244
  • 66 Düzel E, Richardson-Klavehn A, Neufang M. et al . Early partly anticipatory, neural oscillations during identification set the stage for priming.  NeuroImage. 2005;  25 690-700
  • 67 Cohen L, Dehaene S, Naccache L. et al . The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients.  Brain. 2000;  123 291-307
  • 68 Nobre AC, Allison T, McCarthy G. Word recognition in the human inferior temporal lobe.  Nature. 1994;  372 260-263
  • 69 Dehaene S, Naccache L, Cohen L. et al . Cerebral mechanisms of word masking and unconscious repetition priming.  Nature Neuroscience. 2001;  4 752-758
  • 70 Eden GF, Moats L. The role of neuroscience in the remediation of students with dyslexia.  Nature Neuroscience. 2002;  5 1080-1084
  • 71 Gabrieli JDE, Fleischman DA, Keane MM. et al . Double dissociation between memory systems underlying explicit and implicit memory in the human brain.  Psychological Science. 1995;  6 76-82
  • 72 Keane MM, Gabrieli JD, Mapstone HC. et al . Double dissociation of memory capacities after bilateral occipital-lobe or medial temporal-lobe lesions.  Brain. 1995;  118 1129-1148
  • 73 Rajaram S, Srinivas K, Travers S. The effects of attention on perceptual implicit memory.  Memory and Cognition. 2001;  29 920-930
  • 74 Richardson-Klavehn A, Gardiner JM. Depth-of-processing effects on priming in word-stem completion: Tests of the voluntary-contamination, lexical-processing, and conceptual-processing hypotheses.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1998;  24 593-609
  • 75 Stone M, Ladd SL, Gabrieli JDE. The role of selective attention in perceptual and affective priming.  American Journal of Psychology. 2000;  113 341-358
  • 76 Stone M, Ladd SL, Vaidya CJ. et al . Word-identification priming for ignored and attended words.  Consciousness and Cognition. 1998;  7 238-258
  • 77 Rajaram S, Travers S. Deselection effects in long-term memory. In: N. Ohta, C. MacLeod, & B. Uttl (Eds.), Dynamic cognitive processes (pp. 191–217). Tokyo, Japan: Springer-Verlag; 2005
  • 78 Desimone R. Neural mechanisms for visual memory and their role in attention.  Proceedings of the National Academy of Sciences USA. 1996;  93 13494-13499
  • 79 Fries P, Reynolds JH, Rorie AE. et al . Modulation of oscillatory neuronal synchronization by selective visual attention.  Science. 2001;  291 1560-1563
  • 80 Hanslmayr S, Aslan A, Staudigl T. et al . Prestimulus oscillations predict visual perceptual performance between and within subjects.  NeuroImage. 2007;  37 1465-1473
  • 81 Super H, van der Togt C, Spekreijse H. et al . Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.  Journal of Neuroscience. 2003;  23 3407-3414
  • 82 von Stein A, Chiang C, König P. Top-down processing mediated by interareal synchronization.  Proceedings of the National Academy of Sciences USA. 2000;  97 14748-14753
  • 83 Engel AK, Fries P, Singer W. Dynamic predictions: Oscillations and synchrony in top-down processing.  Nature Reviews Neuroscience. 2001;  2 704-716
  • 84 Uhlhaas PJ, Pipa G, Lima B. et al . Neural synchrony in cortical networks: History, concept and current status.  Frontiers in Integrative Neuroscience. 2009;  3 1-19
  • 85 Niessing J, Ebisch B, Schmidt KE. et al . Hemodynamic signals correlate tightly with sychronized gamma oscillations.  Science. 2005;  309 948-951
  • 86 Behrmann M, Geng JJ, Shomstein S. Parietal cortex and attention.  Current Opinion in Neurobiology. 2004;  14 212-217
  • 87 Culham JC, Kanwisher NG. Neuroimaging of cognitive functions in human parietal cortex.  Current Opinion in Neurobiology. 2001;  11 157-163
  • 88 Cabeza R, Ciaramelli E, Olson IR. et al . The parietal cortex and episodic memory: An attentional account.  Nature Reviews Neuroscience. 2008;  9 613-625
  • 89 Corbetta M, Schulman GL. Control of goal directed and stimulus driven attention in the brain.  Nature Reviews Neuroscience. 2002;  3 201-215
  • 90 Tulving E, Schacter DL. Priming and human memory systems.  Science. 1990;  247 301-306
  • 91 Graf P, Shimamura AP, Squire LR. Priming across modalities and priming across category levels: Extending the domain of preserved function in amnesia.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1985;  11 386-396
  • 92 Shimamura AP, Squire LR. Paired associate learning and priming effects in amnesia: A neuropsychological approach.  Journal of Experimental Psychology: General. 1984;  113 556-570
  • 93 Ramponi C, Richardson-Klavehn A, Gardiner JM. Level of processing and age affect involuntary conceptual priming of weak but not strong associates.  Experimental Psychology. 2004;  51 159-164
  • 94 Ramponi C, Richardson-Klavehn A, Gardiner JM. Component processes of conceptual priming and associative cued recall: The roles of preexisting representation and depth of processing.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 2007;  33 843-862
  • 95 Wig GS, Buckner RL, Schacter DL. Repetition priming influences distinct brain systems: Evidence from task-evoked data and resting-state correlations.  Journal of Neurophysiology. 2009;  101 2632-2648
  • 96 Jacoby LL. Remembering the data: Analyzing interactive processes in reading.  Journal of Verbal Learning and Verbal Behavior. 1983;  22 485-508
  • 97 Jacoby LL. Perceptual enhancement: Persistent effects of an experience.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1983;  9 21-38
  • 98 Jacoby LL, Brooks LR. Nonanalytic cognition: Memory, perception, and concept learning. In: G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 18, pp. 1–47). New York: Academic Press; 1984
  • 99 Berry CJ, Henson RNA, Shanks DR. On the relationship between repetition priming and recognition memory: Insights from a computational model.  Journal of Memory and Language. 2006;  55 515-533
  • 100 Berry CJ, Shanks DR, Henson RNA. On the status of unconscious memory: Merikle and Reingold (1991) revisited.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 2006;  32 925-935
  • 101 Berry CJ, Shanks DR, Henson RNA. A single-system account of the relationship between priming, recognition, and fluency.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 2008;  34 97-111
  • 102 Kinder A, Shanks DR. Amnesia and the declarative/procedural distinction: A recurrent network model of classification, recognition, and repetition priming.  Journal of Cognitive Neuroscience. 2001;  13 648-669
  • 103 Kinder A, Shanks DR. Neuropsychological dissociations between priming and recognition: A single-system connectionist account.  Psychological Review. 2003;  110 728-744
  • 104 Humphreys GW, Price CJ. Cognitive neuropsychology and functional brain imaging: Implications for functional and neuroanatomical models of cognition.  Acta Psychologica (Amsterdam). 2001;  107 119-153
  • 105 Rugg MD. Functional neuroimaging and cognitive theory. In: F. Rösler, C. Ranganath, B. Röder, & R. H. Kluwe (Eds.), Neuroimaging of human memory: Linking cognitive processes to neural systems (pp. 443–450). New York: Oxford University Press; 2009
  • 106 Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory, and the hippocampus: A neural network approach to causality.  Nature Reviews Neuroscience. 2008;  9 65-75
  • 107 Schott BH, Minuzzi L, Düzel E. et al . Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release.  Journal of Neuroscience. 2008;  28 14311-14319
  • 108 Grill-Spector K, Henson RNA, Martin A. Repetition and the brain: Neural models of stimulus-specific effects.  Trends in Cognitive Sciences. 2006;  10 14-23
  • 109 Henson RNA. Neuroimaging studies of priming.  Progress in Neurobiology. 2003;  70 53-81
  • 110 Henson RNA, Rugg MD. Neural response suppression, haemodynamic repetition effects, and behavioural priming.  Neuropsychologia. 2003;  41 263-270
  • 111 Schacter DL, Buckner RL. Priming and the brain.  Neuron. 1998;  20 185-195
  • 112 Schacter DL, Wig GS, Stevens WD. Reductions in cortical activity during priming.  Current Opinion in Neurobiology. 2007;  17 171-176
  • 113 Wiggs CL, Martin A. Properties and mechanisms of perceptual priming.  Current Opinion in Neurobiology. 1998;  8 227-233
  • 114 Kirsner K, Speelman CP, Schofield P. Implicit memory and skill acquisition: Is synthesis possible?. In: M. E. J. Masson & P. Graf (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 119–140). Hillsdale, NJ: Erlbaum; 1993
  • 115 Jacoby LL, Dallas M. On the relationship between autobiographical memory and perceptual learning.  Journal of Experimental Psychology: General. 1981;  111 306-340
  • 116 Levy BA, Kirsner K. Reprocessing text: Indirect measures of word and message level processes.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1989;  15 407-417
  • 117 MacLeod CM. Word context during initial exposure influences degree of priming in word fragment completion.  Journal of Experimental Psychology: Learning, Memory, and Cognition. 1989;  15 398-406
  • 118 Oliphant GW. Repetition and recency effects in word recognition.  Australian Journal of Psychology. 1983;  35 393-403
  • 119 Osgood CE, Hoosain R. Salience of the word as a unit in the perception of language.  Perception and Psychophysics. 1974;  15 168-192
  • 120 Levy BA. Fluent rereading: An implicit indicator of reading skill development. In M. E. J. Masson & P. Graf (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 49–73). Hillsdale, NJ: Erlbaum; 1993
  • 121 Golby A, Silverberg G, Race E. et al . Memory encoding in Alzheimer's disease: An fMRI study of explicit and implicit memory.  Brain. 2005;  128 773-787
  • 122 Lustig C, Buckner RL. Preserved neural correlates of priming in old age and dementia.  Neuron. 2004;  10 865-875
  • 123 Gabrieli J, Vaidya C, Stone M. et al . Convergent behavioral and neuropsychological evidence for a distinction between identification and production forms of repetition priming.  Journal of Experimental Psychology: General. 1999;  128 479-498
  • 124 McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: Applications and advances.  Neuroimage. 2004;  23 (Supplement 1) S250-S263

Correspondence

Dr. Alan Richardson-Klavehn

Arbeitsgruppe Gedächtnis

und Bewusstsein

Universitätsklinik für

Neurologie

Otto-v.-Gruericke Universität

Leipziger Straße 44

39120 Magdeburg

eMail: alan.richardson-klavehn@med.ovgu.de

    >