ABSTRACT
Platelets, as the first cellular response after disruption of vascular and/or tissue
integrity, cover any existing injury within our body. But is the regenerative potential
of platelets limited to providing a cellular patch for wounds? This review highlights
the recent advance in our understanding of platelets being distinctly regulated and
regulating cells that contribute immensely to the healing process from the very initial
stage to the late events of tissue regeneration. For instance, the intrinsic actions
of platelets as a regenerative cell, the participation of platelets in angiogenic
processes, and the interplay of platelets and circulating stem and progenitor cells,
as well as potential therapeutic implications, are addressed. Although we are starting
to understand the underlying mechanisms connecting platelets to the components of
tissue regeneration just mentioned, many aspects remain to be elucidated. The demand
to invest research in this area is underscored by the fact that platelets or platelet-derived
molecules are already applied in clinical contexts such as connective tissue regeneration,
whereas other research fields have largely neglected platelet effects going beyond
their participation in the coagulation cascade. Understanding the mechanisms connecting
platelets to tissue regeneration, however, will inevitably open novel options in regenerative
medicine.
KEYWORDS
Platelets - regeneration - stem cells
REFERENCES
- 1
Jackson S P.
The growing complexity of platelet aggregation.
Blood.
2007;
109(12)
5087-5095
- 2
Denis C V, Wagner D D.
Platelet adhesion receptors and their ligands in mouse models of thrombosis.
Arterioscler Thromb Vasc Biol.
2007;
27(4)
728-739
- 3
Ruggeri Z M, Mendolicchio G L.
Adhesion mechanisms in platelet function.
Circ Res.
2007;
100(12)
1673-1685
- 4
Sachs U J, Nieswandt B.
In vivo thrombus formation in murine models.
Circ Res.
2007;
100(7)
979-991
- 5
Langer H F, Gawaz M.
Platelet-vessel wall interactions in atherosclerotic disease.
Thromb Haemost.
2008;
99(3)
480-486
- 6
Franzén L, Dahlquist C.
The effect of transforming growth factor-beta on fibroblast cell proliferation in
intact connective tissue in vitro.
In Vitro Cell Dev Biol Anim.
1994;
30A(7)
460-463
- 7
Klein M B, Yalamanchi N, Pham H, Longaker M T, Chang J.
Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production.
J Hand Surg [Am].
2002;
27(4)
615-620
- 8
Centrella M, McCarthy T L, Canalis E.
Transforming growth factor beta is a bifunctional regulator of replication and collagen
synthesis in osteoblast-enriched cell cultures from fetal rat bone.
J Biol Chem.
1987;
262(6)
2869-2874
- 9
Harris S E, Bonewald L F, Harris M A et al..
Effects of transforming growth factor beta on bone nodule formation and expression
of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and
type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts.
J Bone Miner Res.
1994;
9(6)
855-863
- 10
Li Y, Foster W, Deasy B M et al..
Transforming growth factor-beta1 induces the differentiation of myogenic cells into
fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis.
Am J Pathol.
2004;
164(3)
1007-1019
- 11
Cavins J A, Farber S, Roy A J.
Transfusion of fresh platelet concentrates to adult patients with thrombocytopenia.
Transfusion.
1968;
8(1)
24-27
- 12
Lowenstein L, Weil P G.
The treatment of haemorrhage with platelet preserved blood.
Can Serv Med J.
1956;
12(10)
878-882
- 13
Matras H.
Effect of various fibrin preparations on reimplantations in the rat skin [in German].
Osterr Z Stomatol.
1970;
67(9)
338-359
- 14
Carreon L Y, Glassman S D, Anekstein Y, Puno R M.
Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions.
Spine (Phila Pa 1976).
2005;
30
E243-E246
- 15
Everts P A, Devilee R J, Brown Mahoney C et al..
Exogenous application of platelet-leukocyte gel during open subacromial decompression
contributes to improved patient outcome. A prospective randomized double-blind study.
Eur Surg Res.
2008;
40(2)
203-210
- 16
Uggeri J, Belletti S, Guizzardi S et al..
Dose-dependent effects of platelet gel releasate on activities of human osteoblasts.
J Periodontol.
2007;
78(10)
1985-1991
- 17
de Mos M, van der Windt A E, Jahr H de MM et al.
Can platelet-rich plasma enhance tendon repair? A cell culture study.
Am J Sports Med.
2008;
36(6)
1171-1178
- 18
Kark L R, Karp J M, Davies J E.
Platelet releasate increases the proliferation and migration of bone marrow-derived
cells cultured under osteogenic conditions.
Clin Oral Implants Res.
2006;
17(3)
321-327
- 19
Slater M, Patava J, Kingham K, Mason R S.
Involvement of platelets in stimulating osteogenic activity.
J Orthop Res.
1995;
13(5)
655-663
- 20
Gruber R, Kandler B, Fischer M B, Watzek G.
Osteogenic differentiation induced by bone morphogenetic proteins can be suppressed
by platelet-released supernatant in vitro.
Clin Oral Implants Res.
2006;
17(2)
188-193
- 21
Sarkar M R, Augat P, Shefelbine S J et al..
Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen
scaffold.
Biomaterials.
2006;
27(9)
1817-1823
- 22
Dohan Ehrenfest D M, Rasmusson L, Albrektsson T.
Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to
leucocyte- and platelet-rich fibrin (L-PRF).
Trends Biotechnol.
2009;
27(3)
158-167
- 23
van Hinsbergh V W, Collen A, Koolwijk P.
Role of fibrin matrix in angiogenesis.
Ann N Y Acad Sci.
2001;
936
426-437
- 24
Deasy B M, Lu A, Tebbets J C et al..
A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells
have higher muscle regeneration efficiency.
J Cell Biol.
2007;
177(1)
73-86
- 25
Anitua E, Sánchez M, Zalduendo M M et al..
Fibroblastic response to treatment with different preparations rich in growth factors.
Cell Prolif.
2009;
42(2)
162-170
- 26
Virchenko O, Grenegård M, Aspenberg P.
Independent and additive stimulation of tendon repair by thrombin and platelets.
Acta Orthop.
2006;
77(6)
960-966
- 27
Bosch G, van Schie H T, de Groot M W et al..
Effects of platelet-rich plasma on the quality of repair of mechanically induced core
lesions in equine superficial digital flexor tendons: a placebo-controlled experimental
study.
J Orthop Res.
2009;
28(2)
211-217
- 28
Schnabel L V, Mohammed H O, Miller B J et al..
Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum
superficialis tendons.
J Orthop Res.
2007;
25(2)
230-240
- 29
Aspenberg P, Virchenko O.
Platelet concentrate injection improves Achilles tendon repair in rats.
Acta Orthop Scand.
2004;
75(1)
93-99
- 30
Mishra A, Pavelko T.
Treatment of chronic elbow tendinosis with buffered platelet-rich plasma.
Am J Sports Med.
2006;
34(11)
1774-1778
- 31
Lesurtel M, Graf R, Aleil B et al..
Platelet-derived serotonin mediates liver regeneration.
Science.
2006;
312(5770)
104-107
- 32
Myronovych A, Murata S, Chiba M et al..
Role of platelets on liver regeneration after 90% hepatectomy in mice.
J Hepatol.
2008;
49(3)
363-372
- 33
Carmeliet P.
Angiogenesis in health and disease.
Nat Med.
2003;
9(6)
653-660
- 34
Rafii S, Lyden D.
Therapeutic stem and progenitor cell transplantation for organ vascularization and
regeneration.
Nat Med.
2003;
9(6)
702-712
- 35
Blair P, Flaumenhaft R.
Platelet alpha-granules: basic biology and clinical correlates.
Blood Rev.
2009;
23(4)
177-189
- 36
Langer H F, Gawaz M.
Platelets in regenerative medicine.
Basic Res Cardiol.
2008;
103(4)
299-307
- 37
Gawaz M, Stellos K, Langer H F.
Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction
with progenitor and dendritic cells.
J Thromb Haemost.
2008;
6(2)
235-242
- 38
Kisucka J, Butterfield C E, Duda D G et al..
Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage.
Proc Natl Acad Sci U S A.
2006;
103(4)
855-860
- 39
Klement G L, Yip T T, Cassiola F et al..
Platelets actively sequester angiogenesis regulators.
Blood.
2009;
113(12)
2835-2842
- 40
Wartiovaara U, Salven P, Mikkola H et al..
Peripheral blood platelets express VEGF-C and VEGF which are released during platelet
activation.
Thromb Haemost.
1998;
80(1)
171-175
- 41
Banks R E, Forbes M A, Kinsey S E et al..
Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from
platelets: significance for VEGF measurements and cancer biology.
Br J Cancer.
1998;
77(6)
956-964
- 42
Andrae J, Gallini R, Betsholtz C.
Role of platelet-derived growth factors in physiology and medicine.
Genes Dev.
2008;
22(10)
1276-1312
- 43
Li J J, Huang Y Q, Basch R, Karpatkin S.
Thrombin induces the release of angiopoietin-1 from platelets.
Thromb Haemost.
2001;
85(2)
204-206
- 44
O'Reilly M S, Boehm T, Shing Y et al..
Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.
Cell.
1997;
88(2)
277-285
- 45
Maione T E, Gray G S, Petro J et al..
Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides.
Science.
1990;
247(4938)
77-79
- 46
Perollet C, Han Z C, Savona C, Caen J P, Bikfalvi A.
Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits
FGF-2 dimerization.
Blood.
1998;
91(9)
3289-3299
- 47
Iruela-Arispe M L, Bornstein P, Sage H.
Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells
in vitro.
Proc Natl Acad Sci U S A.
1991;
88(11)
5026-5030
- 48
Kopp H G, Hooper A T, Broekman M J et al..
Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent
of revascularization.
J Clin Invest.
2006;
116(12)
3277-3291
- 49
Ma L, Elliott S N, Cirino G, Buret A, Ignarro L J, Wallace J L.
Platelets modulate gastric ulcer healing: role of endostatin and vascular endothelial
growth factor release.
Proc Natl Acad Sci U S A.
2001;
98(11)
6470-6475
- 50
Ma L, Perini R, McKnight W et al..
Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release
from human platelets.
Proc Natl Acad Sci U S A.
2005;
102(1)
216-220
- 51
Italiano Jr J E, Richardson J L, Patel-Hett S et al..
Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are
organized into separate platelet alpha granules and differentially released.
Blood.
2008;
111(3)
1227-1233
- 52
D'Amore P, Shepro D.
Stimulation of growth and calcium influx in cultured, bovine, aortic endothelial cells
by platelets and vasoactive substances.
J Cell Physiol.
1977;
92(2)
177-183
- 53
Pipili-Synetos E, Papadimitriou E, Maragoudakis M E.
Evidence that platelets promote tube formation by endothelial cells on matrigel.
Br J Pharmacol.
1998;
125(6)
1252-1257
- 54
Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D.
Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization.
Cardiovasc Res.
2005;
67(1)
30-38
- 55
Kim H K, Song K S, Chung J H, Lee K R, Lee S N.
Platelet microparticles induce angiogenesis in vitro.
Br J Haematol.
2004;
124(3)
376-384
- 56
Rhee J S, Black M, Schubert U et al..
The functional role of blood platelet components in angiogenesis.
Thromb Haemost.
2004;
92(2)
394-402
- 57
Cowan C A, Klimanskaya I, McMahon J et al..
Derivation of embryonic stem-cell lines from human blastocysts.
N Engl J Med.
2004;
350(13)
1353-1356
- 58
Takahashi K, Tanabe K, Ohnuki M et al..
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
Cell.
2007;
131(5)
861-872
- 59
Asahara T, Murohara T, Sullivan A et al..
Isolation of putative progenitor endothelial cells for angiogenesis.
Science.
1997;
275(5302)
964-967
- 60
Crisan M, Yap S, Casteilla L et al..
A perivascular origin for mesenchymal stem cells in multiple human organs.
Cell Stem Cell.
2008;
3(3)
301-313
- 61
Zheng B, Cao B, Crisan M et al..
Prospective identification of myogenic endothelial cells in human skeletal muscle.
Nat Biotechnol.
2007;
25(9)
1025-1034
- 62
Cao B, Zheng B, Jankowski R J et al..
Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential.
Nat Cell Biol.
2003;
5(7)
640-646
- 63
Sekiguchi H, Ii M, Losordo D W.
The relative potency and safety of endothelial progenitor cells and unselected mononuclear
cells for recovery from myocardial infarction and ischemia.
J Cell Physiol.
2009;
219(2)
235-242
- 64
Hristov M, Zernecke A, Liehn E A, Weber C.
Regulation of endothelial progenitor cell homing after arterial injury.
Thromb Haemost.
2007;
98(2)
274-277
- 65
Stellos K, Gawaz M.
Platelet interaction with progenitor cells: potential implications for regenerative
medicine.
Thromb Haemost.
2007;
98(5)
922-929
- 66
Stellos K, Gnerlich S, Kraemer B, Lindemann S, Gawaz M.
Platelet interaction with progenitor cells: vascular regeneration or inquiry?.
Pharmacol Rep.
2008;
60(1)
101-108
- 67
Deasy B M, Jankowski R J, Huard J.
Muscle-derived stem cells: characterization and potential for cell-mediated therapy.
Blood Cells Mol Dis.
2001;
27(5)
924-933
- 68
Qu-Petersen Z, Deasy B, Jankowski R et al..
Identification of a novel population of muscle stem cells in mice: potential for muscle
regeneration.
J Cell Biol.
2002;
157(5)
851-864
- 69
Payne T R, Oshima H, Sakai T et al..
Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle
stem cells.
Gene Ther.
2005;
12(16)
1264-1274
- 70
Oshima H, Payne T R, Urish K L et al..
Differential myocardial infarct repair with muscle stem cells compared to myoblasts.
Mol Ther.
2005;
12(6)
1130-1141
- 71
Okada M, Payne T R, Zheng B et al..
Myogenic endothelial cells purified from human skeletal muscle improve cardiac function
after transplantation into infarcted myocardium.
J Am Coll Cardiol.
2008;
52(23)
1869-1880
- 72
Carr L K, Steele D, Steele S et al..
1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat
stress urinary incontinence.
Int Urogynecol J Pelvic Floor Dysfunct.
2008;
19(6)
881-883
- 73
Payne T R, Oshima H, Okada M et al..
A relationship between vascular endothelial growth factor, angiogenesis, and cardiac
repair after muscle stem cell transplantation into ischemic hearts.
J Am Coll Cardiol.
2007;
50(17)
1677-1684
- 74
Péault B, Rudnicki M, Torrente Y et al..
Stem and progenitor cells in skeletal muscle development, maintenance, and therapy.
Mol Ther.
2007;
15(5)
867-877
- 75
Crisan M, Deasy B, Gavina M et al..
Purification and long-term culture of multipotent progenitor cells affiliated with
the walls of human blood vessels: myoendothelial cells and pericytes.
Methods Cell Biol.
2008;
86
295-309
- 76
Collett G D, Canfield A E.
Angiogenesis and pericytes in the initiation of ectopic calcification.
Circ Res.
2005;
96(9)
930-938
- 77
Caplan A I.
All MSCs are pericytes?.
Cell Stem Cell.
2008;
3(3)
229-230
- 78
Langer H F, Stellos K, Steingen C et al..
Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem
cells in vitro.
J Mol Cell Cardiol.
2009;
47(2)
315-325
- 79
Langer H, May A E, Daub K et al..
Adherent platelets recruit and induce differentiation of murine embryonic endothelial
progenitor cells to mature endothelial cells in vitro.
Circ Res.
2006;
98(2)
e2-e10
- 80
de Boer H C, Verseyden C, Ulfman L H et al..
Fibrin and activated platelets cooperatively guide stem cells to a vascular injury
and promote differentiation towards an endothelial cell phenotype.
Arterioscler Thromb Vasc Biol.
2006;
26(7)
1653-1659
- 81
Langer H F, May A E, Vestweber D, De Boer H C, Hatzopoulos A K, Gawaz M.
Platelet-induced differentiation of endothelial progenitor cells.
Semin Thromb Hemost.
2007;
33(2)
136-143
- 82
Lev E I, Estrov Z, Aboulfatova K et al..
Potential role of activated platelets in homing of human endothelial progenitor cells
to subendothelial matrix.
Thromb Haemost.
2006;
96(4)
498-504
- 83
Zernecke A, Schober A, Bot I et al..
SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of
smooth muscle progenitor cells.
Circ Res.
2005;
96(7)
784-791
- 84
Möhle R, Bautz F, Rafii S, Moore M A, Brugger W, Kanz L.
The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and
leukemic cells and mediates transendothelial migration induced by stromal cell-derived
factor-1.
Blood.
1998;
91(12)
4523-4530
- 85
Peled A, Grabovsky V, Habler L et al..
The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular
endothelium under shear flow.
J Clin Invest.
1999;
104(9)
1199-1211
- 86
Stellos K, Gawaz M.
Platelets and stromal cell-derived factor-1 in progenitor cell recruitment.
Semin Thromb Hemost.
2007;
33(2)
159-164
- 87
Massberg S, Konrad I, Schürzinger K et al..
Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived
progenitor cells to arterial thrombi in vivo.
J Exp Med.
2006;
203(5)
1221-1233
- 88
Stellos K, Langer H, Daub K et al..
Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation
of human CD34+ cells to endothelial progenitor cells.
Circulation.
2008;
117(2)
206-215
- 89
Jin D K, Shido K, Kopp H G et al..
Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment
of CXCR4+ hemangiocytes.
Nat Med.
2006;
12(5)
557-567
- 90
Stellos K, Bigalke B, Langer H et al..
Expression of stromal-cell-derived factor-1 on circulating platelets is increased
in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor
cells.
Eur Heart J.
2009;
30(5)
584-593
- 91
Massberg S, Gawaz M, Grüner S et al..
A crucial role of glycoprotein VI for platelet recruitment to the injured arterial
wall in vivo.
J Exp Med.
2003;
197(1)
41-49
- 92
Savage B, Saldívar E, Ruggeri Z M.
Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von
Willebrand factor.
Cell.
1996;
84(2)
289-297
- 93
Daub K, Langer H, Seizer P et al..
Platelets induce differentiation of human CD34+ progenitor cells into foam cells and
endothelial cells.
FASEB J.
2006;
20(14)
2559-2561
- 94
Prokopi M, Pula G, Mayr U et al..
Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor
cell cultures.
Blood.
2009;
114(3)
723-732
- 95
Hill J M, Zalos G, Halcox J P et al..
Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.
N Engl J Med.
2003;
348(7)
593-600
- 96
Werner N, Kosiol S, Schiegl T et al..
Circulating endothelial progenitor cells and cardiovascular outcomes.
N Engl J Med.
2005;
353(10)
999-1007
- 97
Angiolillo D J, Fernandez-Ortiz A, Bernardo E et al..
Platelet function profiles in patients with type 2 diabetes and coronary artery disease
on combined aspirin and clopidogrel treatment.
Diabetes.
2005;
54(8)
2430-2435
- 98
Gawaz M, Neumann F J, Ott I, May A, Schömig A.
Platelet activation and coronary stent implantation. Effect of antithrombotic therapy.
Circulation.
1996;
94(3)
279-285
- 99
Dernbach E, Randriamboavonjy V, Fleming I, Zeiher A M, Dimmeler S, Urbich C.
Impaired interaction of platelets with endothelial progenitor cells in patients with
cardiovascular risk factors.
Basic Res Cardiol.
2008;
103(6)
572-581
- 100
Möhle R, Green D, Moore M A, Nachman R L, Rafii S.
Constitutive production and thrombin-induced release of vascular endothelial growth
factor by human megakaryocytes and platelets.
Proc Natl Acad Sci U S A.
1997;
94(2)
663-668
- 101
McLaren K M.
Immunohistochemical localisation of thrombospondin in human megakaryocytes and platelets.
J Clin Pathol.
1983;
36(2)
197-199
- 102
Brunner G, Nguyen H, Gabrilove J, Rifkin D B, Wilson E L.
Basic fibroblast growth factor expression in human bone marrow and peripheral blood
cells.
Blood.
1993;
81(3)
631-638
- 103
McLaren K M, Pepper D S.
Immunological localisation of beta-thromboglobulin and platelet factor 4 in human
megakaryocytes and platelets.
J Clin Pathol.
1982;
35(11)
1227-1231
- 104
Jurasz P, Santos-Martinez M J, Radomska A, Radomski M W.
Generation of platelet angiostatin mediated by urokinase plasminogen activator: effects
on angiogenesis.
J Thromb Haemost.
2006;
4(5)
1095-1106
- 105
Kaplan D R, Chao F C, Stiles C D, Antoniades H N, Scher C D.
Platelet alpha granules contain a growth factor for fibroblasts.
Blood.
1979;
53(6)
1043-1052
- 106
Ben-Ezra J, Sheibani K, Hwang D L, Lev-Ran A.
Megakaryocyte synthesis is the source of epidermal growth factor in human platelets.
Am J Pathol.
1990;
137(4)
755-759
- 107
Villeneuve J, Block A, Le Bousse-Kerdilès M C et al..
Tissue inhibitors of matrix metalloproteinases in platelets and megakaryocytes: a
novel organization for these secreted proteins.
Exp Hematol.
2009;
37(7)
849-856
- 108
Karey K P, Sirbasku D A.
Human platelet-derived mitogens. II. Subcellular localization of insulinlike growth
factor I to the alpha-granule and release in response to thrombin.
Blood.
1989;
74(3)
1093-1100
- 109
English D, Welch Z, Kovala A T et al..
Sphingosine 1-phosphate released from platelets during clotting accounts for the potent
endothelial cell chemotactic activity of blood serum and provides a novel link between
hemostasis and angiogenesis.
FASEB J.
2000;
14(14)
2255-2265
Konstantinos StellosM.D.
Medizinische Klinik III, Kardiologie und Kreislauferkrankungen
Eberhard Karls-Universität Tübingen, Tübingen, Germany
eMail: konstantinos.stellos@med.uni-tuebingen.de
Harald F LangerM.D.
Medizinische Klinik III, Kardiologie und Kreislauferkrankungen
Eberhard Karls-Universität Tübingen, 72076 Tubingen, Germany
eMail: harald.langer@med.uni-tuebingen.de