Planta Med 2011; 77(1): 7-15
DOI: 10.1055/s-0030-1250136
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Biosynthesis and Therapeutic Properties of Lavandula Essential Oil Constituents

Grant Woronuk1 , Zerihun Demissie1 , Mark Rheault1 , Soheil Mahmoud1
  • 1Irving K. Barber School of Arts & Sciences Unit 2, University of British Columbia – Okanagan, Kelowna, Canada
Weitere Informationen

Publikationsverlauf

received June 3, 2010

accepted June 23, 2010

Publikationsdatum:
21. Juli 2010 (online)

Abstract

Lavenders and their essential oils have been used in alternative medicine for several centuries. The volatile compounds that comprise lavender essential oils, including linalool and linalyl acetate, have demonstrative therapeutic properties, and the relative abundance of these metabolites is greatly influenced by the genetics and environment of the developing plants. With the rapid progress of molecular biology and the genomic sciences, our understanding of essential oil biosynthesis has greatly improved over the past few decades. At the same time, there is a recent surge of interest in the use of natural remedies, including lavender essential oils, in alternative medicine and aromatherapy. This article provides a review of recent developments related to the biosynthesis and medicinal properties of lavender essential oils.

References

  • 1 Aqil M, Ahad A, Sultana Y, Ali A. Status of terpenes as skin penetration enhancers.  Drug Discov Today. 2007;  12 1061-1067
  • 2 Lis-Balchin M. Lavender: the genus Lavandula. London; CRC Press 2002: 208-209
  • 3 Gilani A H, Aziz N, Khan M A, Shaheen F, Jabeen Q, Siddiqui B S. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L.  J Ethnopharmacol. 2000;  71 161-167
  • 4 Khalil A M, Ashy M A, El-Tawil B A H, Tawfiq N I. Constituents of local plants: 5. The coumarin and triterpenoid constituents of Lavandula dentata L. plant.  Pharmazie. 1979;  34 564-565
  • 5 National Non-Food Crops Centre .http://www.nnfcc.co.uk/metadot/index Accessed February 1, 2010
  • 6 Wyckoff L, Sievers A. Lavender growing in America.  Am Perfumer. 1935;  31 67-70
  • 7 Perry N, Perry E. Aromatherapy in the management of psychiatric disorders clinical and neuropharmacological perspectives.  CNS Drugs. 2006;  20 257-280
  • 8 Heuberger E, Hongratanaworakit T, Böhm C, Weber R, Buchbauer G. Effects of chiral fragrances on human autonomic nervous system parameters and self-evaluation.  Chem Senses. 2001;  26 281-292
  • 9 Frey W H. Bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord.  Drug Deliv Technol. 2002;  2 46-49
  • 10 Born J, Lange T, Kern W, McGregor G P, Bickel U, Fehm H L. Sniffing neuropeptides: a transnasal approach to the human brain.  Nat Neurosci. 2002;  5 514-516
  • 11 Hallschmid M, Benedict C, Born J, Fehm H-L, Kern W. Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man.  Physiol Behav. 2004;  83 55-64
  • 12 Hudson R. The value of lavender for rest and activity in the elderly patient.  Complement Ther Med. 1996;  4 52-57
  • 13 Field T, Field T, Cullen C, Largie S, Diego M, Schanberg S, Kuhn C. Lavender bath oil reduces stress and crying and enhances sleep in very young infants.  Early Hum Dev. 2008;  84 399-401
  • 14 Goel N, Kim H, Lao R P. An olfactory stimulus modifies nighttime sleep in young men and women.  Chronobiol Int. 2005;  22 889-904
  • 15 Tasev T, Toléva P, Balabanova V. Neurophysical effect of Bulgarian essential oils from rose, lavender and geranium.  Folia Med (Plovdiv). 1969;  11 307-317
  • 16 Tisserand R. The essential oil safety data manual. Brighton; Tisserand Aromatherapy Institute 1988
  • 17 Kritsidima M, Newton T, Asimakopoulou K. The effects of lavender scent on dental patient anxiety levels: a cluster randomised-controlled trial.  Community Dent Oral Epidemiol. 2009;  38 83-87
  • 18 Sugawara Y, Hara C, Tamura K, Fujii T, Nakamura K, Masujima M, Aoki T. Sedative effect on humans of inhalation of essential oil of linalool: sensory evaluation and physiological measurements using optically active linalools.  Anal Chim Acta. 1998;  365 293-299
  • 19 Hoferl M, Krist S, Buchbauer G. Chirality influences the effects of linalool on physiological parameters of stress.  Planta Med. 2006;  72 1188-1192
  • 20 European Parliament and of the Council of 27 February 2003 . Amending council directive 76/768/EEC on the approximation of the laws of the member states relating to cosmetic products.  Off J Eur Union. 2003;  L66 26-35
  • 21 Sköld M, Börje A, Matura M, Karlberg A-T. Studies on the autoxidation and sensitizing capacity of the fragrance chemical linalool, identifying a linalool hydroperoxide.  Contact Dermatitis. 2002;  46 267-272
  • 22 Sköld M, Börje A, Harambasic E, Karlberg A-T. Contact allergens formed on air exposure of linalool. Identification and quantification of primary and secondary oxidation products and the effect on skin sensitization.  Chem Res Toxicol. 2004;  17 1697-1705
  • 23 Matura M, Sköld M, Börje A, Andersen K, Bruze M, Frosch P, Goossens A, Johansen J, Svedman C, White I, Karlberg A-T. Selected oxidized fragrance terpenes are common contact allergens.  Contact Dermatitis. 2005;  52 320-328
  • 24 Christensson J B, Matura M, Gruvberger B, Bruze M, Karlberg A-T. Linalool – a significant contact sensitizer after air exposure.  Contact Dermatitis. 2010;  62 32-41
  • 25 Smallwood J, Brown R, Coulter F, Irvine E, Copland C. Aromatherapy and behaviour disturbances in dementia: a randomized controlled trial.  Int J Geriatr Psychiatry. 2001;  16 1010-1013
  • 26 Holmes C, Hopkins V, Hensford C, MacLaughlin V, Wilkinson D, Rosenvinge H. Lavender oil as a treatment for agitated behaviour in severe dementia: a placebo controlled study.  Int Geriatr Psychiatry. 2002;  17 305-308
  • 27 Bowles E J, Griffiths D M, Quirk L, Brownrigg A, Croot K. Effects of essential oils and touch on resistance to nursing care procedures and other dementia-related behaviours in a residential care facility.  Int J Aromather. 2002;  12 1-8
  • 28 Holmes C, Ballard C. Aromatherapy in dementia.  Adv Psychiatric Treat. 2004;  10 296-300
  • 29 Dunn C, Sleep J, Collett D. Sensing an improvement: an experimental study to evaluate the use of aromatherapy, massage and periods of rest in an intensive care unit.  J Adv Nurs. 1995;  21 34-40
  • 30 Howard S, Hughes B M. Expectancies, not aroma, explain impact of lavender aromatherapy on psychophysiological indices of relaxation in young healthy women.  Br J Health Psychol. 2008;  13 603-617
  • 31 Fernandez M, Hernandez-Reif M, Field T, Diego M, Sanders C, Roca A. EEG during lavender and rosemary exposure in infants of depressed and non-depressed mothers.  Infant Behav Dev. 2004;  27 91-100
  • 32 Diego M A, Jones N A, Field T, Hernandez-Reif M, Schanberg S, Kuhn C, McAdam V, Galamaga R, Galamaga M. Aromatherapy positively affects mood, EEG patterns of alertness and math computations.  Int J Neurosci. 1998;  96 217-224
  • 33 Shiina Y, Funabashi N, Lee K, Toyoda T, Sekine T, Honjo S, Hasegawa, Kawata T, Wakatsuki Y, Hayashi S, Murakami S, Koike K, Daimon M, Komuro I. Relaxation effects of lavender aromatherapy improve coronary flow velocity reserve in healthy men evaluated by transthoracic Doppler echocardiography.  Int J Cardiol. 2008;  129 193-197
  • 34 Ravizza R, Gariboldi M B, Molteni R, Monti E. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells.  Oncol Rep. 2008;  20 625-630
  • 35 Jager W, Buchbauer G, Jirovetz L, Fritzer M. Percutaneous absorption of lavender oil from massage oil.  J Soc Cosmet Chem. 1992;  4 49-54
  • 36 Jager W, Nasel B, Nasel C, Binder R, Stimpfl T, Vycudilik W, Buchbauer G. Pharmacokinetic studies of the fragrance compound 1,8-cineol in humans during inhalation.  Chem Senses. 1996;  21 477-480
  • 37 Jirovetz L, Buchbauer G, Jager W, Raverdino V, Nikiforov A. Determination of lavender oil fragrance compounds in blood samples.  Fresenius J Anal Chem. 1990;  338 922-923
  • 38 Kohlert C, van Rensen I, März R, Schindler G, Graefe U E, Veit M. Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans.  Planta Med. 2000;  66 495-505
  • 39 Evandri M G, Battinelli L, Daniele C, Mastrangelo S, Bolle P, Mazzanti G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay.  Food Chem Toxicol. 2005;  43 1381-1387
  • 40 Abe S, Maruyama N, Hayama K, Ishibashi H, Inoue S, Oshima H, Yamaguchi H. Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils.  Mediators Inflamm. 2003;  12 323-328
  • 41 Linck V M, da Silva A L, Figueiró M, Piato A L, Herrmann A P, Birck D F, Caramão E, Nunes D S, Moreno P R H, Elisabetsky E. Inhaled linalool-induced sedation in mice.  Phytomedicine. 2009;  16 303-307
  • 42 Buchbauer G, Jirovetz L, Jäger W, Plank C, Dietrich H. Fragrance compounds and essential oils with sedative effects upon inhalation.  J Pharm Sci. 1993;  82 660-664
  • 43 Silva Brum L F, Emanuelli T, Souza D O, Elisabetsky E. Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes.  Neurochem Res. 2001;  26 191-194
  • 44 Peana A T, D'Aquila P S, Chessa M L, Moretti M D L, Serra G, Pippia P. (−)-Linalool produces antinociception in two experimental models of pain.  Eur J Pharmacol. 2003;  403 37-41
  • 45 Peana A T, De Montis M G, Nieddu E, Spano M T, D'Aquila P S, Pippia P. Profile of spinal and supra-spinal antinociception of (−)-linalool.  Eur J Pharmacol. 2004;  485 165-174
  • 46 Peana A T, De Montis M G, Sechi S, Sircana G, D'Aquila P S, Pippia P. Effects of (−)-linalool in the acute hyperalgesia induced by carrageenan, l-glutamate and prostaglandin E2.  Eur J Pharmacol. 2004;  497 279-284
  • 47 Peana A T, Rubattu P, Piga G G, Fumagalli S, Boatto G, Pippia P, De Montis M G. Involvement of adenosine A1 and A2A receptors in (−)-linalool-induced antinociception.  Life Sci. 2006;  78 2471-2474
  • 48 Komiya M, Takeuchi T, Harada E. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice.  Behav Brain Res. 2006;  172 240-249
  • 49 Buchbauer G, Jager W, Jirovetz L, Ilmberger J, Dietrich H. Therapeutic properties of essential oils and fragrances. Bioactive volatile compounds from plants. Washington DC; American Chemical Society 1993: 159-165
  • 50 Zhang Z, Chen H, Chan K, Budd T, Ganapathi R. Gas chromatographic mass-spectrometric analysis of perillyl alcohol and metabolites in plasma.  J Chromatogr B Biomed Sci Appl. 1999;  728 85-95
  • 51 Loutrari H, Hatziapostolou M, Skouridou V, Papadimitriou E, Roussos C, Kolisis F N, Papapetropoulos A. Perillyl alcohol is an angiogenesis inhibitor.  J Pharmacol Exp Ther. 2004;  311 568-575
  • 52 Moteki H, Hibasami H, Yamada Y, Katsuzaki H, Imai K, Komiya T. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line.  Oncol Rep. 2002;  9 757-760
  • 53 Calcabrini A, Stringaro A, Toccacieli L, Meschini S, Marra M, Colone M, Salvatore G, Mondello F, Arancia G, Molinari A. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells.  J Invest Dermatol. 2004;  122 349-360
  • 54 Wattenberg L W. Inhibition of azoxymethane-induced neoplasia of the large bowel by 3-hydroxy-3,7,11-trimethyl-l,6,10-dodecatriene (nerolidol).  Carcinogen. 1991;  12 151-152
  • 55 McGarvey D J, Croteau R. Terpenoid metabolism.  Plant Cell. 1995;  7 1015-1026
  • 56 Mahmoud S S, Croteau R B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase.  Proc Natl Acad Sci USA. 2001;  98 8915-8920
  • 57 Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants.  Annu Rev Plant Biol. 1995;  46 521-547
  • 58 Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants?.  Plant Physiol. 1995;  109 1337-1343
  • 59 Mahmoud S S, Croteau R B. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase.  Proc Natl Acad Sci USA. 2003;  100 14481-14486
  • 60 Mahmoud S S, Williams M, Croteau R. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil.  Phytochemistry. 2004;  65 547-554
  • 61 McConkey M E, Gershenzon J, Croteau R B. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint.  Plant Physiol. 2000;  122 215-223
  • 62 Schilmiller A L, Schauvinhold I, Larson M, Xu R, Charbonneau A L, Schmidt A, Wilkerson C, Last R L, Pichersky E. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.  Proc Natl Acad Sci USA. 2009;  106 10865-10870
  • 63 Aharoni A, Giri A P, Deuerlein S, Griepink F, de Kogel W J, Verstappen F W, Verhoeven H A, Jongsma M A, Schwab W, Bouwmeester H J. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.  Plant Cell. 2003;  15 2866-2884
  • 64 McCaskill D, Croteau R. Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha × piperita) rely exclusively on plastid-derived isopentenyl diphosphate.  Planta. 1995;  197 49-56
  • 65 Laule O, Furholz A, Chang H S, Zhu T, Wang X, Heifetz P B, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.  Proc Natl Acad Sci USA. 2003;  100 6866-6871
  • 66 Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers.  Proc Natl Acad Sci USA. 2005;  102 933-938
  • 67 Adam K P, Zapp J. Biosynthesis of the isoprene units of chamomile sesquiterpenes.  Phytochemistry. 1998;  48 953-959
  • 68 Hemmerlin A, Hoeffler J F, Meyer O, Tritsch D, Kagan I A, Grosdemange-Billiard C, Rohmer M, Bach T J. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.  J Biol Chem. 2003;  278 26666-26676
  • 69 Facchini P J, Chappell J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco.  Proc Natl Acad Sci USA. 1992;  89 11088-11092
  • 70 Colby S M, Alonso W R, Katahira E J, McGarvey D J, Croteau R. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase.  J Biol Chem. 1993;  268 23016-23024
  • 71 Degenhardt J, Köllner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.  Phytochemistry. 2009;  70 1621-1637
  • 72 Landmann C, Fink B, Festner M, Dregus M, Engel K H, Schwab W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).  Arch Biochem Biophys. 2007;  465 417-429
  • 73 Estevez J, Cantero A, Reindl A, Reichler S, León P. 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.  J Biol Chem. 2001;  276 22901-22909
  • 74 Kim S W, Keasling J D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production.  Biotechnol Bioeng. 2001;  72 408-415
  • 75 Mahmoud S S, Croteau R B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants.  Trends Plant Sci. 2002;  7 366-373
  • 78 Phillips M A, Croteau R. Resin based defenses in conifers.  Trends Plant Sci. 1999;  4 184-190
  • 79 Van Poecke R M P, Posthumus M A, Dicke M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis.  J Chem Ecol. 2001;  27 1911-1928
  • 80 Rodriguez-Saona C, Crafts-Brandner S J, Williams III L, Pare P. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants.  J Chem Ecol. 2002;  28 1733-1747
  • 81 Staudt M, Bertin N. Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves.  Plant Cell Environ. 1998;  21 385-395
  • 82 Llusià J, Peñuelas J. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions.  Am J Bot. 2000;  87 133-140
  • 83 Hakola H, Tarvainen V, Bäck J, Ranta H, Bonn B, Rinne J, Kulmala M. Seasonal variation of mono- and sesquiterpene emission rates of Scots pine.  Biogeoscience. 2006;  2 1697-1717
  • 84 Guitton Y, Nicolè F, Moja S, Valot N, Legrand S, Jullien F, Legendre F. Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. X intermedia) inflorescence development.  Physiol Plant. 2010;  138 150-163
  • 85 Lane A, Boeckelmann A, Woronuk G, Sarker L, Mahmoud S. Genomics resource for investigating regulation of essential oil production in Lavandula angustifolia.  Planta. 2010;  231 835-845
  • 86 Zwenger S, Basu C. In silico analysis of terpene synthase genes in Arabidopsis thaliana.  EXCLI J. 2007;  6 203-211
  • 87 Godard K A, White R, Bohlmann J. Monoterpene-induced molecular responses in Arabidopsis thaliana.  Phytochemistry. 2008;  69 1838-1849
  • 88 Munoz-Bertomeu J, Arrillaga I, Ros R, Segura J. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender.  Plant Physiol. 2006;  142 890-900

Dr. Soheil Mahmoud

Biology
University of British Columbia Okanagan

3333 University Way

Kelowna, B. C.

Canada V1V 1V7

Telefon: + 12 5 08 07 87 52

Fax: + 12 5 08 07 80 05

eMail: soheil.mahmoud@ubc.ca

    >