Abstract
Cinnamon bark (Cinnamomum zeylanicum ) is used extensively as an antimicrobial material and currently is being increasingly
used in Europe by people with type II diabetes to control their glucose levels. In
this paper we describe the action of cinnamon oil, its major component, trans- cinnamaldehyde, and an analogue, 4-hydroxy-3-methoxy-trans -cinnamaldehyde against bacterial acetyl-CoA carboxylase in an attempt to elucidate
the mechanism of action of this well-known antimicrobial material. These natural products
inhibited the carboxyltransferase component of Escherichia coli acetyl-CoA carboxylase but had no effect on the activity of the biotin carboxylase
component. The inhibition patterns indicated that these products bound to the biotin
binding site of carboxyltransferase with trans- cinnamaldehyde having a Ki value of 3.8 ± 0.6 mM. The inhibition of carboxyltransferase by 4-hydroxy-3-methoxy-trans -cinnamaldehyde was analyzed with a new assay for this enzyme based on capillary electrophoresis.
These results explain, in part, the antibacterial activity of this well-known antimicrobial
material.
Key words
Cinnamomum zeylanicum
- Lauraceae -
trans‐ cinnamaldehyde - acetyl‐CoA carboxylase - carboxyltransferase
References
1 The King James Bible, Exodus, 30: 23 – 26.
2 Farrell K T. Spices, condiments and seasonings. New York; The AVI Publisher Co.
1985
3
Mishra A, Bhatti R, Singh A, Ishar M P S.
Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy.
Planta Med.
2010;
76
412-417
4
de Luis D A, Aller R, Romero E.
Cinnamon as possible treatment of diabetes mellitus type 2.
Med Clin (Barc).
2008;
131
279
5
Ammon H P.
Cinnamon in type 2 diabetics.
Med Monatsschr Pharm.
2008;
31
179-183
6
Baker W L, Gutierrez-Williams G, White C M, Kluger J, Coleman C I.
Effect of cinnamon on glucose control and lipid parameters.
Diabetes Care.
2008;
31
41-43
7
Dugoua J J, Seely D, Perri D, Cooley K, Forelli T, Mills E, Koren G.
From type 2 diabetes to antioxidant activity: a systematic review of the safety and
efficacy of common and cassia cinnamon bark.
Can J Physiol Pharmacol.
2007;
85
837-847
8
Suppapitiporn S, Kanpaksi N, Suppapitiporn S.
The effect of cinnamon cassia powder in type 2 diabetes mellitus.
J Med Assoc Thai.
2006;
89 (Suppl. 3)
S200-S205
9
Inouye S, Uchida K, Nishiyama Y, Hasumi Y, Yamaguchi H, Abe S.
Combined effect of heat, essential oils and salt on fungicidal activity against Trichophyton mentagrophytes in a foot bath.
Nippon Ishinkin Gakkai Zasshi.
2007;
48
27-36
10
Pozzatti P, Scheid L A, Spader T B, Atayde M L, Santurio J M, Alves S H.
In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant
and fluconazole-susceptible Candida spp.
Can J Microbiol.
2008;
54
950-956
11
Prabuseenivasan S, Jayakumar M, Ignacimuthu S.
In vitro antibacterial activity of some plant essential oils.
BMC Complement Altern Med.
2006;
6
39
12
Shahverdi A R, Monsef-Esfahani H R, Tavasoli F, Zaheri A, Mirjani R.
trans-Cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro .
J Food Sci.
2007;
72
S055-S058
13
Wong S Y, Grant I R, Friedman M, Elliott C T, Situ C.
Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis .
Appl Environ Microbiol.
2008;
74
5986-5990
14
Mosqueda-Melgar J, Raybaudi-Massilia R M, Martín-Belloso O.
Combination of high-intensity pulsed electric fields with natural antimicrobials to
inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon
juices.
Food Microbiol.
2008;
25
479-491
15
Marongiu B, Piras A, Porcedda S, Tuveri E, Sanjust E, Meli M, Sollai F, Zucca P, Rescigno A.
Supercritical CO2 extract of Cinnamomum zeylanicum : chemical characterization and antityrosinase activity.
J Agric Food Chem.
2007;
55
10022-10027
16
Kim D H, Kim C H, Kim M S, Kim J Y, Jung K J, Chung J H, An W G, Lee J W, Yu B P,
Chung H Y.
Suppression of age-related inflammatory NF-kappaB activation by cinnamaldehyde.
Biogerontology.
2007;
8
545-554
17
McCarty M F.
Toward prevention of Alzheimers disease – potential nutraceutical strategies for suppressing
the production of amyloid beta peptides.
Med Hypotheses.
2006;
67
682-697
18
Kannappan S, Jayaraman T, Rajasekar P, Ravichandran M K, Anuradha C V.
Cinnamon bark extract improves glucose metabolism and lipid profile in the fructose-fed
rat.
Singapore Med J.
2006;
47
858-863
19
O'Keefe J H, Gheewala N M, O'Keefe J O.
Dietary strategies for improving post-prandial glucose, lipids, inflammation, and
cardiovascular health.
J Am Coll Cardiol.
2008;
51
249-255
20
Qin B, Polansky M M, Sato Y, Adeli K, Anderson R A.
Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing
lipoproteins in fructose-fed animals.
J Nutr Biochem.
2009;
20
901-908
21
Gibbons S, Udo E E.
The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant.
Phytother Res.
2000;
14
139-140
22
Ross J I, Farrell A M, Eady E A, Cove J H, Cunliffe W J.
Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance
determinant from Staphylococcus epidermidis .
J Antimicrob Chemother.
1989;
24
851-862
23
Richardson J F, Reith S.
Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods.
J Hosp Infect.
1993;
25
45-52
24
Kaatz G W, Seo S M, Ruble C A.
Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus .
Antimicrob Agents Chemother.
1993;
37
1086-1094
25
Blanchard C Z, Lee Y M, Frantom P A, Waldrop G L.
Mutations at four active site residues of biotin carboxylase abolish substrate-induced
synergism by biotin.
Biochemistry.
1999;
38
3393-3400
26
Blanchard C Z, Waldrop G L.
Overexpression and kinetic characterization of the carboxyltransferase component of
acetyl-CoA carboxylase.
J Biol Chem.
1998;
273
19140-19145
27
Cleland W W.
Statistical analysis of enzyme kinetic data.
Methods Enzymol.
1979;
63
103-138
28
Cronan J E, Waldrop G L.
Multi-subunit acetyl-CoA carboxylases.
Prog Lipid Res.
2002;
41
407-435
29
Levert K L, Waldrop G L.
A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA
carboxylase.
Biochem Biophys Res Commun.
2002;
291
1213-1217
30
Glatz Z.
Determination of enzymatic activity by capillary electrophoresis.
J Chromatogr B.
2006;
841
23-37
31 Chantiwas R, Yan X, Gilman S D. Biological applications of microfluidics. Hoboken;
John Wiley & Sons 2008: 135-170
32
Holden H M, Benning M M, Haller T, Gerlt J A.
The crotonase superfamily: divergently related enzymes that catalyze different reactions
involving acyl coenzyme A thioesters.
Acc Chem Res.
2001;
34
145-157
33
Hamed R B, Batchelar E T, Clifton I J, Schofield C J.
Mechanisms and structures of crotonase superfamily enzymes – how nature controls enolate
and oxyanion reactivity.
Cell Mol Life Sci.
2008;
65
2507-2527
34
Bilder P, Lightle S, Bainbridge G, Ohren J, Finzel B, Sun F, Holley S, Al-Kassim L,
Spessard C, Melnick M, Newcomer M, Waldrop G L.
The structure of the carboxyltransferase component of acetyl-CoA carboxylase reveals
a zinc-binding motif unique to the bacterial enzyme.
Biochemistry.
2006;
45
1712-1722
35
Leonard P M, Brzozowski A M, Lebedev A, Marshall C M, Smith D J, Verma C S, Walton N J,
Grogan G.
The 1.8 Å resolution structure of hydroxycinnamoyl-coenzyme A hydratase-lyase (HCHL)
from Pseudomonas fluorescens , an enzyme that catalyses the transformation of feruloyl-coenzyme A to vanillin.
Acta Crystalllogr D.
2006;
D62
1494-1501
36
Bahnson B J, Anderson V E, Petsko G A.
Structural mechanism of enoyl-CoA hydratase: Three atoms from single water are added
in either an E1cb stepwise or concerted fashion.
Biochemistry.
2002;
41
2621-2629
37
Miller J R, Dunham S, Mochalkin I, Banotai C, Bowman M, Buist S, Dunkle B, Hanna D,
Harwood H J, Huband M D, Karnovsky A, Kuhn M, Limberakis C, Liu J Y, Mehrens S, Mueller W T,
Narasimhan L, Ogden A, Ohren J, Prasad J V N V, Shelly J A, Skerlos L, Sulavik M,
Thomas V H, VanderRoest S, Wang L, Wang Z, Whitton A, Zhu T, Stover C K.
A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore.
PNAS.
2009;
106
1737-1742
38
Freiberg C, Brunner N A, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Häbich D,
Ziegelbauer K J.
Identification and characterization of the first class of potent bacterial acetyl-CoA
carboxylase inhibitors with antibacterial activity.
J Biol Chem.
2004;
279
26066-26073
39
Congreve M, Chessari G, Tisi D, Woodhead A J.
Recent developments in fragment-based drug discovery.
J Med Chem.
2008;
51
3661-3680
Simon Gibbons
Department of Pharmaceutical and Biological Chemistry The School of Pharmacy University of London
29–39 Brunswick Square
London WC1N 1AX
United Kingdom
Telefon: + 44 20 77 53 59 13
eMail: simon.gibbons@pharmacy.ac.uk