Subscribe to RSS
DOI: 10.1055/s-0030-1249672
© Georg Thieme Verlag KG Stuttgart · New York
Möglichkeiten und Grenzen der autologen Fetttransplantation – „Consensus Meeting” der DGPRÄC in Hannover, September 2009
Current Perspective and Limitations of Autologous Fat Transplantation – “Consensus Meeting” of the German Society of Plastic, Reconstructive and Aesthetic Surgeons at Hannover; September 2009Publication History
eingereicht 29.1.2010
akzeptiert 27.2.2010
Publication Date:
29 March 2010 (online)

Zusammenfassung
Nachdem die ersten Transplantationen von größeren Mengen an Eigenfett insbesondere in den USA von den Fachgesellschaften kritisch bewertet wurden, gewinnt die Transplantation von Fettgewebe nach Ihrer Erstbeschreibung vor mehr als 100 Jahren wieder an Bedeutung. In einer Konsensuskonferenz (Evidenzgrad V) der DGPRÄC anlässlich der Jahrestagung in Hannover wurde eine Bestandsaufnahme zu verschiedenen Aspekten der autologen Fett(zell)transplantation durchgeführt. Regulatorisch muss das Gewebegesetz eingehalten werden. Um Ergebnisse vergleichen zu können, ist es wichtig die Entnahme-, Verarbeitungs- und Reinjektionstechnik detailliert anzugeben. Es besteht Einigkeit, dass Fett mit geringem Sog gewonnen werden soll und in dünnen multiplen Schichten wieder eingebracht werden sollte (Evidenzgrad V). Die objektive Quantifizierung des Transplantationserfolges ist derzeit mit der MRT möglich und vielversprechend (Evidenzgrad III). Die knappe klinische Studienlage zu Indikationen und langfristigen Erfolgen der autologen Fetttransplantation geht über einen Evidenzgrad II nicht hinaus. Die Risiken der autologen Fetttransplantation sind bei korrekter Technik eher gering; eine Tumorinduktion durch die Transplantation von Fett-, Stroma- und Stammzellen aus abgesaugtem Fett erscheint derzeit unwahrscheinlich. Neue Techniken wie die Stamm- und Stromazell angereicherte Fetttransplantation eröffnen möglicherweise weitere Indikationen.
Abstract
One hundred years after the first description of autologous fat transplantation, this technique is receiving renewed attention. Initially, critically reviewed by plastic surgery societies, particularly those in the United States, the transfer of autologous fat was recently addressed at the September 2009 annual meeting of the German Society of Plastic Reconstructive and Aesthetic Surgeons in Hannover. In this consensus meeting, the panel reviewed both the current status of autologous fat transfer as well as established data concerning this evolving practice. In Germany, autologous fat transplantation is regulated by the Law on Tissue Transfer and Processing (Gewebegesetz). In an effort to facilitate future comparisons it is mandatory to describe harvesting, processing and reinjection techniques in detail. The consensus panel concluded that fat should be harvested using low vacuum settings and then transplanted in thin layers (Evidence V). Quantification of transplanted fat can best be performed by MRI (Evidence level III). Limited clinical studies are available with only some reaching a level of evidence II. At present, risk associated with autologous fat transplantation is considered to be minor. Tumor induction by autologous fat grafting is not proven. New techniques like stem cell enriched fat grafts may offer new promise for the Plastic and Reconstructive Surgeon.
Schlüsselwörter
Liposuction - Mammaaugmentation - Fettgewebe
Key words
breast augmentation - tissue engineering - fat tissue
Literatur
- 1
Antoine P.
Fat and dermofat isografts: an experimental study in mice.
Eur J Plast Surg.
1990;
13
47-250
MissingFormLabel
- 2
Calabria R, Hills B.
Fat grafting: fact or fiction?.
Aesth Surg J.
2005;
25
55-56
MissingFormLabel
- 3
Chala LF, De Barros N, De Camargo Moraes P. et al .
Fat necrosis of the breast: mammographic, sonographic, computed tomography, and magnetic
resonance imaging findings.
Curr Probl Diagn Radiol.
2004;
33
106-126
MissingFormLabel
- 4
Chan CW, McCulley SJ, Macmillan RD.
Autologous fat transfer – a review of the literature with a focus on breast cancer
surgery.
J Plast Reconstr Aesthet Surg..
2008;
61
1438-1448
MissingFormLabel
- 5 Coleman SR. Augmentation of the breast with structural fat.. In: Coleman SR, Mazzola RF, Fat Injection. From Filling to Regeneration. St.Louis, Quality Medical Publishing Inc; 2009
MissingFormLabel
- 6
Coleman SR.
Facial recontouring with lipostructure.
Clin Plast Surg.
1997;
24
347-367
MissingFormLabel
- 7
Coleman SR.
Hand rejuvenation with structural fat grafting.
Plast Reconstr Surg.
2002;
110
1731-1744
; discussion
1745-1737
MissingFormLabel
- 8
Coleman SR, Saboeiro AP.
Fat grafting to the breast revisited: safety and efficacy.
Plast Reconstr Surg.
2007;
119
775-785
; discussion
786-777
MissingFormLabel
- 9
Cotrufo S, Mandal A, Mithoff EM.
Fat grafting to the breast revisited: safety and efficacy.
Plast Reconstr Surg.
2008;
121
339-340
MissingFormLabel
- 10
Czerny V.
Plastischer Ersatz der Brustdrüde durch ein Lipom.
Verh Dtsch Ges Chir..
1895;
2
216
MissingFormLabel
- 11
Defatta RJ, Williams 3rd
EF.
Fat transfer in conjunction with facial rejuvenation procedures.
Facial Plastic Surg Clin North Am.
2008;
16
383-390
MissingFormLabel
- 12 Delay E. Reconstruction of breast deformities.. In: Coleman SR, Mazzola RF, Fat Injection. From Filling to Regeneration. St. Loius, Quality Medical Publishing Inc; 2009
MissingFormLabel
- 13
Delay E, Delaporte T, Sinna R.
Breast implant alternatives.
Ann Chir Plast Esth.
2005;
50
652-672
MissingFormLabel
- 14
Ducic Y.
Fat grafting in trauma and reconstructive surgery.
Facial Plastic Surg Clin North Am.
2008;
16
409-416
MissingFormLabel
- 15
Eitner E.
Fettplastik bei Gesichtsatrophie.
Med Klin.
1931;
27
624-625
MissingFormLabel
- 16
Ellenbogen R.
Autologous fat injection.
Plast Reconstr Surg.
1991;
88
543-544
MissingFormLabel
- 17
Eppley BL, Sidner RA, Platis JM. et al .
Bioactivation of free-fat transfers: a potential new approach to improving graft survival.
Plast Reconstr Surg.
1992;
90
1022-1030
MissingFormLabel
- 18
Fraser JK, Wulur I, Alfonso Z. et al .
Fat tissue: an underappreciated source of stem cells for biotechnology.
Trends Biotech.
2006;
24
150-154
MissingFormLabel
- 19
Gimble JM, Zvonic S, Floyd ZE. et al .
Playing with bone and fat.
J Cell Biochem.
2006;
98
251-266
MissingFormLabel
- 20
Gonzalez AM, Lobocki C, Kelly CP. et al .
An alternative method for harvest and processing fat grafts: an in vitro study of
cell viability and survival.
Plast Reconstr Surg.
2007;
120
285-294
MissingFormLabel
- 21
Gutowski KA.
Current applications and safety of autologous fat grafts: a report of the ASPS fat
graft task force.
Plast Reconstr Surg.
2009;
124
272-280
MissingFormLabel
- 22
Herold C, Ueberreiter K, Cromme F. et al .
MRT-Volumetrie der Mamma zur Kontrolle der Fettresorptionsrate nach autologem Lipotransfer.
Handchir Mikrochir Plast.
2010;
epub ahead.
MissingFormLabel
- 23
Herold C, Reichelt A, Stieglitz LH. et al .
MRI-Based Breast Volumetry-Evaluation of Three Different Software Solutions.
J Digit Imaging epub ahead.
MissingFormLabel
- 24
Hyakusoku H, Ogawa R, Ono S. et al .
Complications after autologous fat injection to the breast.
Plast Reconstr Surg.
2009;
123
360-370
; discussion
371-362
MissingFormLabel
- 25
Illouz YG, Sterodimas A.
Autologous fat transplantation to the breast: a personal technique with 25 years of
experience.
Aesthetic Plast Surg.
2009;
33
706-715
MissingFormLabel
- 26
Iyengar P, Combs TP, Shah SJ. et al .
Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction
of anti-apoptotic transcriptional programs and proto-oncogene stabilization.
Oncogene.
2003;
22
6408-6423
MissingFormLabel
- 27
Kanchwala SK, Glatt BS, Conant EF. et al .
Autologous fat grafting to the reconstructed breast: the management of acquired contour
deformities.
Plast Reconstr Surg.
2009;
124
409-418
MissingFormLabel
- 28
Katz AJ, Tholpady A, Tholpady SS. et al .
Cell surface and transcriptional characterization of human adipose-derived adherent
stromal (hADAS) cells.
Stem Cell.
2005;
23
412-423
MissingFormLabel
- 29
Kaufman MR, Miller TA, Huang C. et al .
Autologous fat transfer for facial recontouring: is there science behind the art?.
Plast Reconstr Surg.
2007;
119
2287-2296
MissingFormLabel
- 30
Keck M, Janke J, Ueberreiter K.
The influence of different local anaesthetics on the viability of preadipocytes.
Handchir Mikrochir Plast Chir.
2007;
39
215-219
MissingFormLabel
- 31
Khouri R, Del Vecchio D.
Breast reconstruction and augmentation using pre-expansion and autologous fat transplantation.
Clin Plast Surg.
2009;
36
269-280
MissingFormLabel
- 32
Kneeshaw PJ, Lowry M, Manton D. et al .
Differentiation of benign from malignant breast disease associated with screening
detected microcalcifications using dynamic contrast enhanced magnetic resonance imaging.
Breast.
2006;
15
29-38
MissingFormLabel
- 33
Kroll SS, Khoo A, Singletary SE. et al .
Local recurrence risk after skin-sparing and conventional mastectomy: a 6-year follow-up.
Plast Reconstr Surg.
1999;
104
421-425
MissingFormLabel
- 34
Lefterova MI, Lazar MA.
New developments in adipogenesis.
Trends Endocrinol Metab.
2009;
20
107-114
MissingFormLabel
- 35
Londos C, Brasaemle DL, Gruia-Gray J. et al .
Perilipin: unique proteins associated with intracellular neutral lipid droplets in
adipocytes and steroidogenic cells.
Biochem Soc Trans.
1995;
23
611-615
MissingFormLabel
- 36
Manabe Y, Toda S, Miyazaki K. et al .
Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells
in collagen gel matrix culture through cancer-stromal cell interactions.
J Pathol.
2003;
201
221-228
MissingFormLabel
- 37
Marques AE, Brenda E, Saldiva PH. et al .
Autologous fat grafts: a quantitative and morphometric study in rabbits.
Scand J Plast Reconstr Surg Hand Surg.
1994;
28
241-247
MissingFormLabel
- 38
Neuber G.
Fetttransplantation.
Verh Dtsch Ges Chir.
1893;
66
MissingFormLabel
- 39
Nguyen A, Pasyk KA, Bouvier TN. et al .
Comparative study of survival of autologous adipose tissue taken and transplanted
by different techniques.
Plast Reconstr Surg.
1990;
85
378-386
; discussion
387-379
MissingFormLabel
- 40
Otto TC, Lane MD.
Adipose development: from stem cell to adipocyte.
Crit Rev Biochem Mol Biol.
2005;
40
229-242
MissingFormLabel
- 41
Peer L.
Loss of weight and volume in human fat grafts with postulation of acell survival theory.
Plast Reconstr Surg.
1950;
5
217-230
MissingFormLabel
- 42
Piasecki JH, Gutowski KA, Lahvis GP. et al .
An experimental model for improving fat graft viability and purity.
Plast Reconstr Surg.
2007;
119
1571-1583
MissingFormLabel
- 43
Pierrefeu-Lagrange AC, Delay E, Guerin N. et al .
Radiological evaluation of breasts reconstructed with lipomodeling.
Ann Chir Plast Esthet.
2006;
51
18-28
MissingFormLabel
- 44
Pulagam SR, Poulton T, Mamounas EP.
Long-term clinical and radiologic results with autologous fat transplantation for
breast augmentation: case reports and review of the literature.
Breast J.
2006;
12
63-65
MissingFormLabel
- 45
Rieck B, Schlaak S.
Measurement in vivo of the survival rate in autologous adipocyte transplantation.
Plast Reconstr Surg.
2003;
111
2315-2323
MissingFormLabel
- 46 Rigotti G, Marchi A, Galie M. et al .Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing
process mediated by adipose-derived adult stem cells. In: Plastic and reconstructive surgery. 2007 119 1409-1422 ; discussion 1423-1404
MissingFormLabel
- 47
Rohrich RJ, Sorokin ES, Brown SA.
In search of improved fat transfer viability: a quantitative analysis of the role
of centrifugation and harvest site.
Plast Reconstr Surg.
2004;
113
391-395
discussion
396-397
MissingFormLabel
- 48
Schaffler A, Buchler C.
Concise review: adipose tissue-derived stromal cells – basic and clinical implications
for novel cell-based therapies.
Stem Cells.
2007;
25
818-827
MissingFormLabel
- 49
Shoshani O, Livne E, Armoni M. et al .
The effect of interleukin-8 on the viability of injected adipose tissue in nude mice.
Plast Reconstr Surg.
2005;
115
853-859
MissingFormLabel
- 50
Shoshani O, Shupak A, Ullmann Y. et al .
The effect of hyperbaric oxygenation on the viability of human fat injected into nude
mice.
Plast Reconstr Surg.
2000;
106
1390-1396
; discussion
1397-1398
MissingFormLabel
- 51
Slavin SA, Love SM, Goldwyn RM.
Recurrent breast cancer following immediate reconstruction with myocutaneous flaps.
Plast Reconstr Surg.
1994;
93
1191-1204
; discussion 1205–1197
MissingFormLabel
- 52
Smahel J.
Problematik des Fettgewebes in der Plastischen Chirurgie.
Handchir Mikrochir Plast Chir.
1984;
16
111-114
MissingFormLabel
- 53
Spear SL, Wilson HB, Lockwood MD.
Fat injection to correct contour deformities in the reconstructed breast.
Plast Reconstr Surg.
2005;
116
1300-1305
MissingFormLabel
- 54
Ullmann Y, Shoshani O, Fodor A. et al .
Searching for the favorable donor site for fat injection: in vivo study using the
nude mice model.
Dermatol Surg.
2005;
31
1304-1307
MissingFormLabel
- 55
Wu Z, Rosen ED, Brun R. et al .
Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway
of adipogenesis and insulin sensitivity.
Mol Cell.
1999;
3
151-158
MissingFormLabel
- 56
Yamaguchi M, Matsumoto F, Bujo H. et al .
Revascularization determines volume retention and gene expression by fat grafts in
mice.
Exp Biol Med.
2005;
230
742-748
MissingFormLabel
- 57
Yoshimura K, Sato K, Aoi N. et al .
Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived
stem/stromal cells.
Aesthetic Plast Surg.
2008;
32
48-55
; discussion 56–47
MissingFormLabel
- 58
Yoshimura K, Sato K, Aoi N. et al .
Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived
stem cells.
Dermatol Surg.
2008;
34
1178-1185
MissingFormLabel
- 59
Yu YM, Jun ES, Bae YC. et al .
Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth
in vivo.
Stem Cells Dev.
2008;
17
463-473
MissingFormLabel
- 60
Yuksel E, Weinfeld AB, Cleek R. et al .
Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like
growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres.
Plast Reconstr Surg.
2000;
106
1712-1720
MissingFormLabel
- 61
Zocchi ML, Zuliani F.
Bicompartmental breast lipostructuring.
Aesthetic Plast Surg.
2008;
32
313-328
MissingFormLabel
- 62
Zuk PA, Zhu M, Mizuno H. et al .
Multilineage cells from human adipose tissue: implications for cell-based therapies.
Tissue Eng.
2001;
7
211-228
MissingFormLabel
Korrespondenzadresse
Prof. Dr. med. Hans-Oliver Rennekampff
Klinik für Plastische, Hand und
Wiederherstellungschirurgie
Medizinische Hochschule
Hannover
Carl Neubergstraße 1
30625 Hannover
Email: rennekampff.oliver@mh-hannover.de