RSS-Feed abonnieren
DOI: 10.1055/s-0030-1249672
© Georg Thieme Verlag KG Stuttgart · New York
Möglichkeiten und Grenzen der autologen Fetttransplantation – „Consensus Meeting” der DGPRÄC in Hannover, September 2009
Current Perspective and Limitations of Autologous Fat Transplantation – “Consensus Meeting” of the German Society of Plastic, Reconstructive and Aesthetic Surgeons at Hannover; September 2009Publikationsverlauf
eingereicht 29.1.2010
akzeptiert 27.2.2010
Publikationsdatum:
29. März 2010 (online)
Zusammenfassung
Nachdem die ersten Transplantationen von größeren Mengen an Eigenfett insbesondere in den USA von den Fachgesellschaften kritisch bewertet wurden, gewinnt die Transplantation von Fettgewebe nach Ihrer Erstbeschreibung vor mehr als 100 Jahren wieder an Bedeutung. In einer Konsensuskonferenz (Evidenzgrad V) der DGPRÄC anlässlich der Jahrestagung in Hannover wurde eine Bestandsaufnahme zu verschiedenen Aspekten der autologen Fett(zell)transplantation durchgeführt. Regulatorisch muss das Gewebegesetz eingehalten werden. Um Ergebnisse vergleichen zu können, ist es wichtig die Entnahme-, Verarbeitungs- und Reinjektionstechnik detailliert anzugeben. Es besteht Einigkeit, dass Fett mit geringem Sog gewonnen werden soll und in dünnen multiplen Schichten wieder eingebracht werden sollte (Evidenzgrad V). Die objektive Quantifizierung des Transplantationserfolges ist derzeit mit der MRT möglich und vielversprechend (Evidenzgrad III). Die knappe klinische Studienlage zu Indikationen und langfristigen Erfolgen der autologen Fetttransplantation geht über einen Evidenzgrad II nicht hinaus. Die Risiken der autologen Fetttransplantation sind bei korrekter Technik eher gering; eine Tumorinduktion durch die Transplantation von Fett-, Stroma- und Stammzellen aus abgesaugtem Fett erscheint derzeit unwahrscheinlich. Neue Techniken wie die Stamm- und Stromazell angereicherte Fetttransplantation eröffnen möglicherweise weitere Indikationen.
Abstract
One hundred years after the first description of autologous fat transplantation, this technique is receiving renewed attention. Initially, critically reviewed by plastic surgery societies, particularly those in the United States, the transfer of autologous fat was recently addressed at the September 2009 annual meeting of the German Society of Plastic Reconstructive and Aesthetic Surgeons in Hannover. In this consensus meeting, the panel reviewed both the current status of autologous fat transfer as well as established data concerning this evolving practice. In Germany, autologous fat transplantation is regulated by the Law on Tissue Transfer and Processing (Gewebegesetz). In an effort to facilitate future comparisons it is mandatory to describe harvesting, processing and reinjection techniques in detail. The consensus panel concluded that fat should be harvested using low vacuum settings and then transplanted in thin layers (Evidence V). Quantification of transplanted fat can best be performed by MRI (Evidence level III). Limited clinical studies are available with only some reaching a level of evidence II. At present, risk associated with autologous fat transplantation is considered to be minor. Tumor induction by autologous fat grafting is not proven. New techniques like stem cell enriched fat grafts may offer new promise for the Plastic and Reconstructive Surgeon.
Schlüsselwörter
Liposuction - Mammaaugmentation - Fettgewebe
Key words
breast augmentation - tissue engineering - fat tissue
Literatur
- 1 Antoine P. Fat and dermofat isografts: an experimental study in mice. Eur J Plast Surg. 1990; 13 47-250
- 2 Calabria R, Hills B. Fat grafting: fact or fiction?. Aesth Surg J. 2005; 25 55-56
- 3 Chala LF, De Barros N, De Camargo Moraes P. et al . Fat necrosis of the breast: mammographic, sonographic, computed tomography, and magnetic resonance imaging findings. Curr Probl Diagn Radiol. 2004; 33 106-126
- 4 Chan CW, McCulley SJ, Macmillan RD. Autologous fat transfer – a review of the literature with a focus on breast cancer surgery. J Plast Reconstr Aesthet Surg.. 2008; 61 1438-1448
- 5 Coleman SR. Augmentation of the breast with structural fat.. In: Coleman SR, Mazzola RF, Fat Injection. From Filling to Regeneration. St.Louis, Quality Medical Publishing Inc; 2009
- 6 Coleman SR. Facial recontouring with lipostructure. Clin Plast Surg. 1997; 24 347-367
- 7 Coleman SR. Hand rejuvenation with structural fat grafting. Plast Reconstr Surg. 2002; 110 1731-1744 ; discussion 1745-1737
- 8 Coleman SR, Saboeiro AP. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2007; 119 775-785 ; discussion 786-777
- 9 Cotrufo S, Mandal A, Mithoff EM. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2008; 121 339-340
- 10 Czerny V. Plastischer Ersatz der Brustdrüde durch ein Lipom. Verh Dtsch Ges Chir.. 1895; 2 216
- 11 Defatta RJ, Williams 3rd EF. Fat transfer in conjunction with facial rejuvenation procedures. Facial Plastic Surg Clin North Am. 2008; 16 383-390
- 12 Delay E. Reconstruction of breast deformities.. In: Coleman SR, Mazzola RF, Fat Injection. From Filling to Regeneration. St. Loius, Quality Medical Publishing Inc; 2009
- 13 Delay E, Delaporte T, Sinna R. Breast implant alternatives. Ann Chir Plast Esth. 2005; 50 652-672
- 14 Ducic Y. Fat grafting in trauma and reconstructive surgery. Facial Plastic Surg Clin North Am. 2008; 16 409-416
- 15 Eitner E. Fettplastik bei Gesichtsatrophie. Med Klin. 1931; 27 624-625
- 16 Ellenbogen R. Autologous fat injection. Plast Reconstr Surg. 1991; 88 543-544
- 17 Eppley BL, Sidner RA, Platis JM. et al . Bioactivation of free-fat transfers: a potential new approach to improving graft survival. Plast Reconstr Surg. 1992; 90 1022-1030
- 18 Fraser JK, Wulur I, Alfonso Z. et al . Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotech. 2006; 24 150-154
- 19 Gimble JM, Zvonic S, Floyd ZE. et al . Playing with bone and fat. J Cell Biochem. 2006; 98 251-266
- 20 Gonzalez AM, Lobocki C, Kelly CP. et al . An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg. 2007; 120 285-294
- 21 Gutowski KA. Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg. 2009; 124 272-280
- 22 Herold C, Ueberreiter K, Cromme F. et al . MRT-Volumetrie der Mamma zur Kontrolle der Fettresorptionsrate nach autologem Lipotransfer. Handchir Mikrochir Plast. 2010; epub ahead.
- 23 Herold C, Reichelt A, Stieglitz LH. et al . MRI-Based Breast Volumetry-Evaluation of Three Different Software Solutions. J Digit Imaging epub ahead.
- 24 Hyakusoku H, Ogawa R, Ono S. et al . Complications after autologous fat injection to the breast. Plast Reconstr Surg. 2009; 123 360-370 ; discussion 371-362
- 25 Illouz YG, Sterodimas A. Autologous fat transplantation to the breast: a personal technique with 25 years of experience. Aesthetic Plast Surg. 2009; 33 706-715
- 26 Iyengar P, Combs TP, Shah SJ. et al . Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene. 2003; 22 6408-6423
- 27 Kanchwala SK, Glatt BS, Conant EF. et al . Autologous fat grafting to the reconstructed breast: the management of acquired contour deformities. Plast Reconstr Surg. 2009; 124 409-418
- 28 Katz AJ, Tholpady A, Tholpady SS. et al . Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cell. 2005; 23 412-423
- 29 Kaufman MR, Miller TA, Huang C. et al . Autologous fat transfer for facial recontouring: is there science behind the art?. Plast Reconstr Surg. 2007; 119 2287-2296
- 30 Keck M, Janke J, Ueberreiter K. The influence of different local anaesthetics on the viability of preadipocytes. Handchir Mikrochir Plast Chir. 2007; 39 215-219
- 31 Khouri R, Del Vecchio D. Breast reconstruction and augmentation using pre-expansion and autologous fat transplantation. Clin Plast Surg. 2009; 36 269-280
- 32 Kneeshaw PJ, Lowry M, Manton D. et al . Differentiation of benign from malignant breast disease associated with screening detected microcalcifications using dynamic contrast enhanced magnetic resonance imaging. Breast. 2006; 15 29-38
- 33 Kroll SS, Khoo A, Singletary SE. et al . Local recurrence risk after skin-sparing and conventional mastectomy: a 6-year follow-up. Plast Reconstr Surg. 1999; 104 421-425
- 34 Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab. 2009; 20 107-114
- 35 Londos C, Brasaemle DL, Gruia-Gray J. et al . Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans. 1995; 23 611-615
- 36 Manabe Y, Toda S, Miyazaki K. et al . Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol. 2003; 201 221-228
- 37 Marques AE, Brenda E, Saldiva PH. et al . Autologous fat grafts: a quantitative and morphometric study in rabbits. Scand J Plast Reconstr Surg Hand Surg. 1994; 28 241-247
- 38 Neuber G. Fetttransplantation. Verh Dtsch Ges Chir. 1893; 66
- 39 Nguyen A, Pasyk KA, Bouvier TN. et al . Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plast Reconstr Surg. 1990; 85 378-386 ; discussion 387-379
- 40 Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 2005; 40 229-242
- 41 Peer L. Loss of weight and volume in human fat grafts with postulation of acell survival theory. Plast Reconstr Surg. 1950; 5 217-230
- 42 Piasecki JH, Gutowski KA, Lahvis GP. et al . An experimental model for improving fat graft viability and purity. Plast Reconstr Surg. 2007; 119 1571-1583
- 43 Pierrefeu-Lagrange AC, Delay E, Guerin N. et al . Radiological evaluation of breasts reconstructed with lipomodeling. Ann Chir Plast Esthet. 2006; 51 18-28
- 44 Pulagam SR, Poulton T, Mamounas EP. Long-term clinical and radiologic results with autologous fat transplantation for breast augmentation: case reports and review of the literature. Breast J. 2006; 12 63-65
- 45 Rieck B, Schlaak S. Measurement in vivo of the survival rate in autologous adipocyte transplantation. Plast Reconstr Surg. 2003; 111 2315-2323
- 46 Rigotti G, Marchi A, Galie M. et al .Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. In: Plastic and reconstructive surgery. 2007 119 1409-1422 ; discussion 1423-1404
- 47 Rohrich RJ, Sorokin ES, Brown SA. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg. 2004; 113 391-395 discussion 396-397
- 48 Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells. 2007; 25 818-827
- 49 Shoshani O, Livne E, Armoni M. et al . The effect of interleukin-8 on the viability of injected adipose tissue in nude mice. Plast Reconstr Surg. 2005; 115 853-859
- 50 Shoshani O, Shupak A, Ullmann Y. et al . The effect of hyperbaric oxygenation on the viability of human fat injected into nude mice. Plast Reconstr Surg. 2000; 106 1390-1396 ; discussion 1397-1398
- 51 Slavin SA, Love SM, Goldwyn RM. Recurrent breast cancer following immediate reconstruction with myocutaneous flaps. Plast Reconstr Surg. 1994; 93 1191-1204 ; discussion 1205–1197
- 52 Smahel J. Problematik des Fettgewebes in der Plastischen Chirurgie. Handchir Mikrochir Plast Chir. 1984; 16 111-114
- 53 Spear SL, Wilson HB, Lockwood MD. Fat injection to correct contour deformities in the reconstructed breast. Plast Reconstr Surg. 2005; 116 1300-1305
- 54 Ullmann Y, Shoshani O, Fodor A. et al . Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Dermatol Surg. 2005; 31 1304-1307
- 55 Wu Z, Rosen ED, Brun R. et al . Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell. 1999; 3 151-158
- 56 Yamaguchi M, Matsumoto F, Bujo H. et al . Revascularization determines volume retention and gene expression by fat grafts in mice. Exp Biol Med. 2005; 230 742-748
- 57 Yoshimura K, Sato K, Aoi N. et al . Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008; 32 48-55 ; discussion 56–47
- 58 Yoshimura K, Sato K, Aoi N. et al . Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008; 34 1178-1185
- 59 Yu YM, Jun ES, Bae YC. et al . Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 2008; 17 463-473
- 60 Yuksel E, Weinfeld AB, Cleek R. et al . Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg. 2000; 106 1712-1720
- 61 Zocchi ML, Zuliani F. Bicompartmental breast lipostructuring. Aesthetic Plast Surg. 2008; 32 313-328
- 62 Zuk PA, Zhu M, Mizuno H. et al . Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7 211-228
Korrespondenzadresse
Prof. Dr. med. Hans-Oliver Rennekampff
Klinik für Plastische, Hand und
Wiederherstellungschirurgie
Medizinische Hochschule
Hannover
Carl Neubergstraße 1
30625 Hannover
eMail: rennekampff.oliver@mh-hannover.de