Semin Neurol 2010; 30(2): 120-130
DOI: 10.1055/s-0030-1249222
© Thieme Medical Publishers

Pathophysiology of Migraine

F. Michael Cutrer1
  • 1Department of Neurology, Mayo Clinic, Rochester, Minnesota
Further Information

Publication History

Publication Date:
29 March 2010 (online)

ABSTRACT

Our understanding of migraine pathophysiology is a work in progress. As more is learned about migraine, it seems that the probability of identifying a single unifying explanation for this common disorder becomes less and less. Although the neuroanatomy and elements of pain physiology underlying migraine attacks are probably shared pathophysiologic elements, the emerging complexity of migraine genetics suggests that the acute attack may be the final common expression of more than one type of initiating abnormality. After a brief summary of the neuroanatomic structures involved in the generation of migraine attacks and the traditional theories of migraine, the author focuses on the current understanding of migraine genetics and reviews recent data from the neuroimaging and the neurophysiology of migraine.

REFERENCES

  • 1 Headache Classification Subcommittee of the International Headache Society . The international classification of headache disorders, 2nd edition.  Cephalalgia. 2004;  24(Suppl 1) 9-160
  • 2 Penfield W. A contribution to the mechanism of intracranial pain.  Association for Research in Nervous and Mental Disease Proceedings (1934). 1935;  15 399-416
  • 3 Ray B S, Wolff H G. Experimental studies on headache. Pain-sensitive structures of the head and their significance in headache.  Arch Surg. 1940;  41 813-856
  • 4 Mayberg M R, Zervas N T, Moskowitz M A. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry.  J Comp Neurol. 1984;  223(1) 46-56
  • 5 Nozaki K, Boccalini P, Moskowitz M A. Expression of c-fos-like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space.  Neuroscience. 1992;  49(3) 669-680
  • 6 DaSilva A FM, Becerra L, Makris N et al.. Somatotopic activation in the human trigeminal pain pathway.  J Neurosci. 2002;  22(18) 8183-8192
  • 7 Sessle B J, Hu J W, Dubner R, Lucier G E. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex, and afferent influences, and effect of nalaxone.  J Neurophysiol. 1981;  45 193-207
  • 8 Kruger L, Young R F. Specialized features of the trigeminal nerve and its central connections. In: Samii M, Janetta PJ The Cranial Nerves. Berlin; Springer-Verlag 1981: 273-301
  • 9 Wise S P, Jones E G. Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex.  J Comp Neurol. 1977;  175(2) 129-157
  • 10 Jacquin M F, Chiaia N L, Haring J H, Rhoades R W. Intersubnuclear connections within the rat trigeminal brainstem complex.  Somatosens Mot Res. 1990;  7(4) 399-420
  • 11 Renehan W E, Jacquin M F, Mooney R D, Rhoades R W. Structure-function relationships in rat medullary and cervical dorsal horns. II. Medullary dorsal horn cells.  J Neurophysiol. 1986;  55(6) 1187-1201
  • 12 Weiller C, May A, Limmroth V et al.. Brain stem activation in spontaneous human migraine attacks.  Nat Med. 1995;  1(7) 658-660
  • 13 Wolff H G. Headache and Other Head Pain. 2nd ed. New York; Oxford University Press 1963
  • 14 Diener H C. RPR100893 Study Group . RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks.  Cephalalgia. 2003;  23(3) 183-185
  • 15 Kruuse C, Thomsen L L, Birk S, Olesen J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter.  Brain. 2003;  126(Pt 1) 241-247
  • 16 Schoonman G G, van der Grond J, Kortmann C, van der Geest R J, Terwindt G M, Ferrari M D. Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3T magnetic resonance angiography study.  Brain. 2008;  131(Pt 8) 2192-2200
  • 17 Rahmann A, Wienecke T, Hansen J M, Fahrenkrug J, Olesen J, Ashina M. Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine.  Cephalalgia. 2008;  28(3) 226-236
  • 18 Woods R P, Iacoboni M, Mazziotta J C. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache.  N Engl J Med. 1994;  331(25) 1689-1692
  • 19 Cutrer F M, Sorensen A G, Weisskoff R M et al.. Perfusion-weighted imaging defects during spontaneous migrainous aura.  Ann Neurol. 1998;  43(1) 25-31
  • 20 Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior cerebral hypoperfusion in migraine without aura.  Cephalalgia. 2008;  28(8) 856-862
  • 21 Cutrer F M, Charles A. The neurogenic basis of migraine.  Headache. 2008;  48(9) 1411-1414
  • 22 Ophoff R A, Terwindt G M, Vergouwe M N et al.. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2 + channel gene CACNL1A4.  Cell. 1996;  87(3) 543-552
  • 23 De Fusco M, Marconi R, Silvestri L et al.. Haploinsufficiency of ATP1A2 encoding the Na+/K+pump alpha2 subunit associated with familial hemiplegic migraine type 2.  Nat Genet. 2003;  33(2) 192-196
  • 24 Dichgans M, Freilinger T, Eckstein G et al.. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine.  Lancet. 2005;  366(9483) 371-377
  • 25 Kusumi M, Ishizaki K, Kowa H et al.. Glutathione S-transferase polymorphisms: susceptibility to migraine without aura.  Eur Neurol. 2003;  49(4) 218-222
  • 26 Kara I, Sazci A, Ergul E, Kaya G, Kilic G. Association of the C677T and A1298C polymorphisms in the 5,10 methylenetetrahydrofolate reductase gene in patients with migraine risk.  Brain Res Mol Brain Res. 2003;  17;111(1–2) 84-90
  • 27 Wessman M, Kallela M, Kaunisto M A et al.. A susceptibility locus for migraine with aura, on chromosome 4q24.  Am J Hum Genet. 2002;  70(3) 652-662
  • 28 Björnsson A, Gudmundsson G, Gudfinnsson E et al.. Localization of a gene for migraine without aura to chromosome 4q21.  Am J Hum Genet. 2003;  73(5) 986-993
  • 29 Tzourio C, El Amrani M, Poirier O, Nicaud V, Bousser M G, Alpérovitch A. Association between migraine and endothelin type A receptor (ETA -231 A/G) gene polymorphism.  Neurology. 2001;  56(10) 1273-1277
  • 30 Carlsson A, Forsgren L, Nylander P-O et al.. Identification of a susceptibility locus for migraine with and without aura on 6p12.2-p21.1  Neurology. 2002;  59(11) 1804-1807
  • 31 Rainero I, Grimaldi L M, Salani G et al.. Association between the tumor necrosis factor-alpha -308 G/A gene polymorphism and migraine.  Neurology. 2004;  62(1) 141-143
  • 32 Rainero I, Fasano E, Rubino E et al.. Association between migraine and HLA-DRB1 gene polymorphisms.  J Headache Pain. 2005;  6(4) 185-187
  • 33 Colson N J, Lea R A, Quinlan S, MacMillan J, Griffiths L R. The estrogen receptor 1 G594A polymorphism is associated with migraine susceptibility in two independent case/control groups.  Neurogenetics. 2004;  5(2) 129-133
  • 34 Oterino A, Pascual J, Ruiz de Alegría C et al.. Association of migraine and ESR1 G325C polymorphism.  Neuroreport. 2006;  17(1) 61-64
  • 35 Lea R A, Dohy A, Jordan K, Quinlan S, Brimage P J, Griffiths L R. Evidence for allelic association of the dopamine beta-hydroxylase gene (DBH) with susceptibility to typical migraine.  Neurogenetics. 2000;  3(1) 35-40
  • 36 Cader Z M, Noble-Topham S, Dyment D A et al.. Significant linkage to migraine with aura on chromosome 11q24.  Hum Mol Genet. 2003;  12(19) 2511-2517
  • 37 Mochi M, Cevoli S, Cortelli P et al.. A genetic association study of migraine with dopamine receptor 4, dopamine transporter and dopamine-beta-hydroxylase genes.  Neurol Sci. 2003;  23(6) 301-305
  • 38 Colson N J, Lea R A, Quinlan S, MacMillan J, Griffiths L R. Investigation of hormone receptor genes in migraine.  Neurogenetics. 2005;  6(1) 17-23
  • 39 Del Zompo M, Cherchi A, Palmas M A et al.. Association between dopamine receptor genes and migraine without aura in a Sardinian sample.  Neurology. 1998;  51(3) 781-786
  • 40 Peroutka S J, Price S C, Wilhoit T L, Jones K W. Comorbid migraine with aura, anxiety, and depression is associated with dopamine D2 receptor (DRD2) NcoI alleles.  Mol Med. 1998;  4(1) 14-21
  • 41 Peroutka S J, Wilhoit T, Jones K. Clinical susceptibility to migraine with aura is modified by dopamine D2 receptor (DRD2) NcoI alleles.  Neurology. 1997;  49(1) 201-206
  • 42 Soragna D, Vettori A, Carraro G et al.. A locus for migraine without aura maps on chromosome 14q21.2-q22.3  Am J Hum Genet. 2003;  72(1) 161-167
  • 43 Ogilvie A D, Russell M B, Dhall P et al.. Altered allelic distributions of the serotonin transporter gene in migraine without aura and migraine with aura.  Cephalalgia. 1998;  18(1) 23-26
  • 44 Paterna S, Di Pasquale P, D'Angelo A et al.. Angiotensin-converting enzyme gene deletion polymorphism determines an increase in frequency of migraine attacks in patients suffering from migraine without aura.  Eur Neurol. 2000;  43(3) 133-136
  • 45 McCarthy L C, Hosford D A, Riley J H et al.. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine.  Genomics. 2001;  78(3) 135-149
  • 46 Emin Erdal M, Herken H, Yilmaz M, Bayazit Y A. Significance of the catechol-O-methyltransferase gene polymorphism in migraine.  Brain Res Mol Brain Res. 2001;  94(1-2) 193-196
  • 47 Nyholt D R, Dawkins J L, Brimage P J, Goadsby P J, Nicholson G A, Griffiths L R. Evidence for an X-linked genetic component in familial typical migraine.  Hum Mol Genet. 1998;  7(3) 459-463
  • 48 Lashley K S. Patterns of cerebral integration indicated by the scotomas of migraine.  Archives of Neurology and Psychiatry. 1941;  46 331-339
  • 49 Leao A AP. Spreading depression of activity in the cerebral cortex.  J Neurophysiol. 1944;  7 359-390
  • 50 Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine.  Ann Neurol. 1981;  9(4) 344-352
  • 51 Lauritzen M, Skyhøj Olsen T, Lassen N A, Paulson O B. Changes in regional cerebral blood flow during the course of classic migraine attacks.  Ann Neurol. 1983;  13(6) 633-641
  • 52 Lauritzen M, Olesen J. Regional cerebral blood flow during migraine attacks by Xenon-133 inhalation and emission tomography.  Brain. 1984;  107(Pt 2) 447-461
  • 53 Olesen J, Friberg L, Olsen T S et al.. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks.  Ann Neurol. 1990;  28(6) 791-798
  • 54 Friberg L, Olsen T S, Roland P E, Lassen N A. Focal ischemia caused by instability of cerebrovascular tone during attacks of hemiplegic migraine. A regional cerebral blood flow study.  Brain. 1987;  110 917-934
  • 55 Andersen A R, Friberg L, Olsen T S, Olesen J. Delayed hyperemia following hypoperfusion in classic migraine. Single photon emission computed tomographic demonstration.  Arch Neurol. 1988;  45 154-159
  • 56 Skyhøj Olsen T, Friberg L, Lassen N A. Ischemia may be the primary cause of the neurologic deficits in classic migraine.  Arch Neurol. 1987;  44(2) 156-161
  • 57 Warach S, Gaa J, Siewert B, Wielopolski P, Edelman R R. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging.  Ann Neurol. 1995;  37(2) 231-241
  • 58 Gardner-Medwin A R, van Bruggen N, Williams S R, Ahier R G. Magnetic resonance imaging of propagating waves of spreading depression in the anaesthetised rat.  J Cereb Blood Flow Metab. 1994;  14(1) 7-11
  • 59 Hasegawa Y, Latour L L, Sotak C et al.. Spreading waves of reduced diffusion coefficient of water in the rat brain.  Neurology. 1994;  44(Suppl 2) A34
  • 60 Sanchez del Rio M, Bakker D, Wu O et al.. Perfusion weighted imaging during migraine: Spontaneous visual aura and headache.  Cephalalgia. 1999;  19 701-717
  • 61 Sorensen A G, Rosen B R. Functional MRI of the brain. In: Magnetic Resonance Imaging of the Brain and Spine. 2nd Ed. Philadelphia; Lippincott-Raven Publishers 1996
  • 62 Cao Y, Welch K M, Aurora S, Vikingstad E M. Functional MRI-BOLD of visually triggered headache in patients with migraine.  Arch Neurol. 1999;  56(5) 548-554
  • 63 Cao Y, Aurora S K, Nagesh V, Patel S C, Welch K M. Functional MRI-BOLD of brainstem structures during visually triggered migraine.  Neurology. 2002;  59(1) 72-78
  • 64 Hadjikhani N, Sanchez Del Rio M, Wu O et al.. Mechanisms of migraine aura revealed by functional MRI in human visual cortex.  Proc Natl Acad Sci U S A. 2001;  98(8) 4687-4692
  • 65 Charles A. Intercellular calcium waves in glia.  Glia. 1998;  24(1) 39-49
  • 66 Haydon P G, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling.  Physiol Rev. 2006;  86(3) 1009-1031
  • 67 Chuquet J, Hollender L, Nimchinsky E A. High-resolution in vivo imaging of the neurovascular unit during spreading depression.  J Neurosci. 2007;  27(15) 4036-4044
  • 68 Welch K M, Levine S R, D'Andrea G, Helpern J A. Brain pH during migraine: an in vivo phosphorus-31 magnetic resonance spectroscopy study.  Cephalalgia. 1988;  8 273-277
  • 69 Welch K M, Levine S R, D'Andrea G, Schultz L R, Helpern J A. Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy.  Neurology. 1989;  39(4) 538-541
  • 70 Welch K MA, Barkley G L, Ramadan N M, D'Andrea G. NMR spectroscopic and magnetoencephalographic studies in migraine with aura: support for the spreading depression hypothesis.  Pathol Biol (Paris). 1992;  40(4) 349-354
  • 71 Van Harreveld A, Fifková E. Mechanisms involved in spreading depression.  J Neurobiol. 1973;  4(4) 375-387
  • 72 Aurora S K, Welch K M, Al-Sayed F. The threshold for phosphenes is lower in migraine.  Cephalalgia. 2003;  23(4) 258-263
  • 73 Ambrosini A, Schoenen J. Electrophysiological response patterns of primary sensory cortices in migraine.  J Headache Pain. 2006;  7(6) 377-388
  • 74 Stankewitz A, May A. Cortical excitability and migraine.  Cephalalgia. 2007;  27(12) 1454-1456
  • 75 Goadsby P J, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache.  Ann Neurol. 1990;  28(2) 183-187
  • 76 Bolay H, Reuter U, Dunn A K, Huang Z, Boas D A, Moskowitz M A. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model.  Nat Med. 2002;  8(2) 136-142
  • 77 Moskowitz M A, Nozaki K, Kraig R P. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms.  J Neurosci. 1993;  13(3) 1167-1177
  • 78 Kraig R P, Nicholson C. Extracellular ionic variations during spreading depression.  Neuroscience. 1978;  3(11) 1045-1059
  • 79 Obrenovitch T P, Urenjak J, Wang M. Nitric oxide formation during cortical spreading depression is critical for rapid subsequent recovery of ionic homeostasis.  J Cereb Blood Flow Metab. 2002;  22(6) 680-688
  • 80 Lauritzen M, Hansen A J, Kronborg D, Wieloch T. Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge.  J Cereb Blood Flow Metab. 1990;  10(1) 115-122
  • 81 Gursoy-Ozdemir Y, Qiu J, Matsuoka N et al.. Cortical spreading depression activates and upregulates MMP-9.  J Clin Invest. 2004;  113(10) 1447-1455
  • 82 Eikermann-Haerter K, Dileköz E, Kudo C et al.. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1.  J Clin Invest. 2009;  119(1) 99-109
  • 83 Afridi S K, Matharu M S, Lee L et al.. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate.  Brain. 2005;  128(Pt 4) 932-939
  • 84 May A, Kaube H, Büchel C et al.. Experimental cranial pain elicited by capsaicin: a PET study.  Pain. 1998;  74(1) 61-66
  • 85 Strassman A M, Raymond S A, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches.  Nature. 1996;  384(6609) 560-564
  • 86 Moskowitz M A, Buzzi M G. Neuroeffector functions of sensory fibres: implications for headache mechanisms and drug actions.  J Neurol. 1991;  238(Suppl 1) S18-S22
  • 87 Moskowitz M A, Cutrer F M. Possible importance of neurogenic inflammation within the meninges to migraine headaches. In: Fields HL, Liebeskind JC Progress in Pain Research and Management. Seattle; IASP Press 1993: 43-49
  • 88 Burstein R, Yamamura H, Malick A, Strassman A M. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons.  J Neurophysiol. 1998;  79(2) 964-982
  • 89 Yamamura H, Malick A, Chamberlin N L, Burstein R. Cardiovascular and neuronal responses to head stimulation reflect central sensitization and cutaneous allodynia in a rat model of migraine.  J Neurophysiol. 1999;  81(2) 479-493
  • 90 Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil B J, Bajwa Z H. An association between migraine and cutaneous allodynia.  Ann Neurol. 2000;  47(5) 614-624
  • 91 Burstein R, Cutrer M F, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine.  Brain. 2000;  123(Pt 8) 1703-1709
  • 92 Sand T, Zhitniy N, Nilsen K B, Helde G, Hagen K, Stovner L J. Thermal pain thresholds are decreased in the migraine preattack phase.  Eur J Neurol. 2008;  15(11) 1199-1205
  • 93 Shields K G, Goadsby P J. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine?.  Brain. 2005;  128(Pt 1) 86-97
  • 94 Welch K M, Nagesh V, Aurora S K, Gelman N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness?.  Headache. 2001;  41(7) 629-637
  • 95 Kruit M C, Launer L J, Overbosch J, van Buchem M A, Ferrari M D. Iron accumulation in deep brain nuclei in migraine: a population-based magnetic resonance imaging study.  Cephalalgia. 2009;  29(3) 351-359
  • 96 Aurora S K, Barrodale P M, Tipton R L, Khodavirdi A. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies.  Headache. 2007;  47(7) 996-1003, discussion 1004–1007
  • 97 Kruit M C, van Buchem M A, Hofman P A et al.. Migraine as a risk factor for subclinical brain lesions.  JAMA. 2004;  291(4) 427-434
  • 98 Kruit M, van Buchem M, Launer L, Terwindt G, Ferrari M. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study.  Cephalalgia. 2009;  , Epub ahead of print
  • 99 Rozen T D. Vanishing cerebellar infarcts in a migraine patient.  Cephalalgia. 2007;  27(6) 557-560
  • 100 Schwedt T J, Demaerschalk B M, Dodick D W. Patent foramen ovale and migraine: a quantitative systematic review.  Cephalalgia. 2008;  28(5) 531-540
  • 101 Anzola G P, Frisoni G B, Morandi E, Casilli F, Onorato E. Shunt-associated migraine responds favorably to atrial septal repair: a case-control study.  Stroke. 2006;  37(2) 430-434
  • 102 Reisman M, Christofferson R D, Jesurum J et al.. Migraine headache relief after transcatheter closure of patent foramen ovale.  J Am Coll Cardiol. 2005;  45(4) 493-495
  • 103 Dowson A, Mullen M J, Peatfield R et al.. Migraine Intervention With STARFlex Technology (MIST) Trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache.  Circulation. 2008;  117(11) 1397-1404
  • 104 Adami A, Rossato G, Cerini R on behalf of the SAM Study Group et al.. Right-to-left shunt does not increase white matter lesion load in migraine with aura patients.  Neurology. 2008;  71(2) 101-107

F. Michael CutrerM.D. 

Department of Neurology, Mayo Clinic

200 First Street SW, Rochester, MN 55905

Email: Cutrer.michael@mayo.edu

    >