Horm Metab Res 2010; 42(5): 318-323
DOI: 10.1055/s-0030-1248304
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Measurement of Adiponectin Production from Differentiated Metabolic Stem Cells

Y. Inomata-Kurashiki1 , K. Maeda1 , 2 , E. Yoshioka1 , A. Fukuhara1 , A. Imagawa1 , M. Otsuki1 , I. Shimomura1
  • 1Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
  • 2Complementary and Alternative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
Further Information

Publication History

received 06.10.2009

accepted 28.01.2010

Publication Date:
10 March 2010 (online)

Abstract

To treat metabolic syndrome, fat tissue dysfunction should be corrected rather than controlling conventional risk factors such as hypertension, dyslipidemia, and diabetes mellitus. For this purpose, accumulating evidence suggests increasing plasma adiponectin levels can be a key treatment strategy, especially in setting of food or drug selection. Here we report that adipocyte precursors obtained from several sites of fat tissue, which we call Metabolic Stem Cells (MSC), could be used as a novel screening system to identify adiponectin enhancing drugs or food for individual patients. MSC were prepared from fat tissues collected from 29 patients. They were differentiated in cultures into mature adipocytes. The time course of adiponectin production was independent of the number of mature adipocytes and gradually decreased at 48 h after differentiation. Pioglitazone, a full PPARγ agonist, stabilized adiponectin production at days 8–16 after differentiation, whereas telmisartan, a partial PPARγ agonist, showed variable response. Dividing the adiponectin secretion of day 12 by that of day 10 provided an estimate of adiponectin-producing activity irrespective of the number of MSC-derived adipocytes in culture. Using this score of adiponectin-production activity, we successfully assessed 16 agents in a 96-well plate. The effect of each agent on adiponectin production showed a similar pattern, independent of the site of isolated adipose tissue. Our results show that MSC can be used as a tool for selecting drugs that enhance adiponectin-production activity.

References

  • 1 Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001.  JAMA. 2003;  289 76-79
  • 2 Bray GA, Greenway FL. Pharmacological treatment of the overweight patient.  Pharmacol Rev. 2007;  59 151-184
  • 3 Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K. Analysis of an expression profile of genes in the human adipose tissue.  Gene. 1997;  190 227-235
  • 4 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 5 Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome.  Arterioscler Thromb Vasc Biol. 2004;  24 29-33
  • 6 Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.  Nat Med. 2006;  12 459-465
  • 7 Hiuge A, Tenenbaum A, Maeda N, Benderly M, Kumada M, Fisman EZ, Tanne D, Matas Z, Hibuse T, Fujita K, Nishizawa H, Adler Y, Motro M, Kihara S, Shimomura I, Behar S, Funahashi T. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level.  Arterioscler Thromb Vasc Biol. 2007;  27 635-641
  • 8 Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat.  Acta Physiol Scand. 2005;  184 285-293
  • 9 Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies.  Tissue Eng. 2001;  7 211-228
  • 10 Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells.  Mol Biol Cell. 2002;  13 4279-4295
  • 11 Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives.  Circulation. 2004;  109 656-663
  • 12 Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.  Circulation. 2004;  110 349-355
  • 13 Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells.  Circ Res. 2004;  94 223-229
  • 14 Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo.  Biochem Biophys Res Commun. 2005;  328 258-264
  • 15 Sengenes C, Lolmede K, Zakaroff-Girard A, Busse R, Bouloumie A. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells.  J Cell Physiol. 2005;  205 114-122
  • 16 Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells.  J Cell Physiol. 2001;  189 54-63
  • 17 Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.  Stem Cells. 2005;  23 412-423
  • 18 Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells.  Arterioscler Thromb Vasc Biol. 2005;  25 2542-2547
  • 19 Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo.  Cell. 2008;  135 240-249
  • 20 Sugiyama H, Maeda K, Yamato M, Hayashi R, Soma T, Hayashida Y, Yang J, Shirakabe M, Matsuyama A, Kikuchi A, Sawa Y, Okano T, Tano Y, Nishida K. Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial cells.  J Tissue Eng Regen Med. 2008;  2 445-449
  • 21 Kanda Y, Matsuda M, Tawaramoto K, Kawasaki F, Hashiramoto M, Matsuki M, Kaku K. Effects of sulfonylurea drugs on adiponectin production from 3T3-L1 adipocytes: implication of different mechanism from pioglitazone.  Diabetes Res Clin Pract. 2008;  81 13-18
  • 22 Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity.  Circulation. 2004;  109 2054-2057
  • 23 Clasen R, Schupp M, Foryst-Ludwig A, Sprang C, Clemenz M, Krikov M, Thone-Reineke C, Unger T, Kintscher U. PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin.  Hypertension. 2005;  46 137-143
  • 24 Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, Ohashi K, Hibuse T, Fujita K, Yasui A, Hiuge A, Kumada M, Kuriyama H, Shimomura I, Funahashi T. Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation.  Kidney Int. 2006;  70 1717-1724
  • 25 Kikuchi Y, Yamada M, Imakiire T, Kushiyama T, Higashi K, Hyodo N, Yamamoto K, Oda T, Suzuki S, Miura S. A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats.  J Endocrinol. 2007;  192 595-603
  • 26 Matsumoto S, Takebayashi K, Aso Y. The effect of spironolactone on circulating adipocytokines in patients with type 2 diabetes mellitus complicated by diabetic nephropathy.  Metabolism. 2006;  55 1645-1652
  • 27 Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines.  Circulation. 2008;  117 2253-2261
  • 28 Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F, Soubrie P. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells.  Mol Pharmacol. 2003;  63 908-914
  • 29 Smith MR, Lee H, Fallon MA, Nathan DM. Adipocytokines, obesity, and insulin resistance during combined androgen blockade for prostate cancer.  Urology. 2008;  71 318-322
  • 30 Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I. Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity.  J Biol Chem. 2005;  280 23653-23659
  • 31 Huypens P, Quartier E, Pipeleers D, Van de Casteele M. Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase.  Eur J Pharmacol. 2005;  518 90-95
  • 32 Ryo M, Maeda K, Onda T, Katashima M, Okumiya A, Nishida M, Yamaguchi T, Funahashi T, Matsuzawa Y, Nakamura T, Shimomura I. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance.  Diabetes Care. 2005;  28 451-453

Correspondence

K. MaedaMD 

Department of Metabolic Medicine

Graduate School of Medicine

Osaka University

2-2 Yamadaoka, Suita

565-0871 Osaka

Japan

Phone: +81/6/6879 3732

Fax: +81/6/6879 3739

Email: kaz@cam.med.osaka-u.ac.jp

    >