RSS-Feed abonnieren
DOI: 10.1055/s-0030-1248297
© Georg Thieme Verlag KG Stuttgart · New York
Metabolic Effects of Free Fatty Acids During Endotoxaemia in a Porcine Model – Free Fatty Acid Inhibition of Growth Hormone Secretion as a Potential Catabolic Feedback Mechanism
Publikationsverlauf
received 24.07.2009
accepted 21.01.2010
Publikationsdatum:
01. März 2010 (online)

Abstract
Critical illness and severe inflammation are catabolic states characterised by breakdown of tissue and protein stores, by increased levels of free fatty acids, and by insulin resistance. These metabolic features contribute to morbidity and mortality. Growth hormone and insulin are the two major anabolic hormones. The present study was designed to test whether increased levels of free fatty acids (i) inhibit growth hormone secretion and (ii) induce insulin resistance during acute endotoxin exposure in a porcine model of critical illness. We studied 20 pigs for 6 h during combined anaesthesia and endotoxin infusion and a hyperinsulinaemic glucose clamp to control glucose, insulin, and free fatty acid concentrations. Pigs were randomised to two different continuous infusion rates of Intralipid® resulting in different, sustained, and elevated free fatty acid concentrations (1.63 mmol l–1 vs. 0.58 mmol l–1, p=0.0002). Concomitantly, we observed reduced growth hormone concentrations in the group with high free fatty acid concentrations (3.5 ng ml–1 vs. 6.6 ng ml–1, p<0.003). No difference in insulin sensitivity, measured as the glucose infusion rate necessary to maintain euglycaemia, was observed. We conclude that high levels of free fatty acids reduce circulating growth hormone concentrations in porcine endotoxaemia; this probably constitutes a negative feedback mechanism whereby growth hormone induced-stimulation of free fatty acids release inhibit growth hormone secretion. This mechanism may further contribute to protein loss in critical illness. We found no evidence that the increment of plasma free fatty acids between groups contribute to insulin resistance in critical illness.
Key words
inflammation - insulin sensitivity - Intralipid® - hyperinsulinaemic euglycaemic clamp - pig model
References
- 1
Lind L, Lithell H.
Impaired glucose and lipid metabolism seen in intensive care patients is related to
severity of illness and survival.
Clin Intensive Care.
1994;
5
100-105
MissingFormLabel
- 2
Nogueira AC, Kawabata V, Biselli P, Lins MH, Valeri C, Seckler M, Hoshino W, Junior LG, Bernik MM, de Andrade Machado JB, Martinez MB, Lotufo PA, Caldini EG, Martins E, Curi R, Soriano FG.
Changes in plasma free fatty acid levels in septic patients are associated with cardiac
damage and reduction in heart rate variability.
Shock.
2007;
29
342-348
MissingFormLabel
- 3
Mesotten D, Swinnen JV, Vanderhoydonc F, Wouters PJ, Van den BG.
Contribution of circulating lipids to the improved outcome of critical illness by
glycemic control with intensive insulin therapy.
J Clin Endocrinol Metab.
2004;
89
219-226
MissingFormLabel
- 4
Streat SJ, Beddoe AH, Hill GL.
Aggressive nutritional support does not prevent protein loss despite fat gain in septic
intensive care patients.
J Trauma.
1987;
27
262-266
MissingFormLabel
- 5
Van den Berghe G, de ZF, Bouillon R.
Clinical review 95: Acute and prolonged critical illness as different neuroendocrine
paradigms.
J Clin Endocrinol Metab.
1998;
83
1827-1834
MissingFormLabel
- 6
Chambrier C, Laville M, Rhzioual BK, Odeon M, Bouletreau P, Beylot M.
Insulin sensitivity of glucose and fat metabolism in severe sepsis.
Clin Sci (Lond).
2000;
99
321-328
MissingFormLabel
- 7
Shangraw RE, Jahoor F, Miyoshi H, Neff WA, Stuart CA, Herndon DN, Wolfe RR.
Differentiation between septic and postburn insulin resistance.
Metabolism.
1989;
38
983-989
MissingFormLabel
- 8
Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R.
Intensive insulin therapy in the critically ill patients.
N Engl J Med.
2001;
345
1359-1367
MissingFormLabel
- 9
Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van WE, Bobbaers H, Bouillon R.
Intensive insulin therapy in the medical ICU.
N Engl J Med.
2006;
354
449-461
MissingFormLabel
- 10
Moller N, Nair KS.
Diabetes and protein metabolism.
Diabetes.
2008;
57
3-4
MissingFormLabel
- 11
Moller N, Otto Lunde JJ.
Effects of Growth Hormone on Glucose, Lipid and Protein Metabolism in Human Subjects.
Endocr Rev.
2009;
152-177
MissingFormLabel
- 12
Bentham J, Rodriguez-Arnao J, Ross RJ.
Acquired growth hormone resistance in patients with hypercatabolism.
Horm Res.
1993;
40
87-91
MissingFormLabel
- 13
Ross R, Miell J, Freeman E, Jones J, Matthews D, Preece M, Buchanan C.
Critically ill patients have high basal growth hormone levels with attenuated oscillatory
activity associated with low levels of insulin-like growth factor-I.
Clin Endocrinol (Oxf).
1991;
35
47-54
MissingFormLabel
- 14
Norrelund H, Nair KS, Jorgensen JO, Christiansen JS, Moller N.
The protein-retaining effects of growth hormone during fasting involve inhibition
of muscle-protein breakdown.
Diabetes.
2001;
50
96-104
MissingFormLabel
- 15
Norrelund H, Nair KS, Nielsen S, Frystyk J, Ivarsen P, Jorgensen JO, Christiansen JS, Moller N.
The decisive role of free fatty acids for protein conservation during fasting in humans
with and without growth hormone.
J Clin Endocrinol Metab.
2003;
88
4371-4378
MissingFormLabel
- 16
Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, Hinds CJ.
Increased mortality associated with growth hormone treatment in critically ill adults.
N Engl J Med.
1999;
341
785-792
MissingFormLabel
- 17
Gallin JI, Kaye D, O’Leary WM.
Serum lipids in infection.
N Engl J Med.
1969;
281
1081-1086
MissingFormLabel
- 18
Nishishita S.
Studies on the fluctuation of the lipoid content of the blood in the fever period.
Jpn J Exper Med.
1941;
97-107
MissingFormLabel
- 19
Samra JS, Summers LKM, Frayn KN.
Sepsis and fat metabolism.
Brit J Surg.
1996;
83
1186-1196
MissingFormLabel
- 20
Wymann MP, Schneiter R.
Lipid signalling in disease.
Nat Rev Mol Cell Biol.
2008;
9
162-176
MissingFormLabel
- 21
Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, Boehm BO, Schaefer JR, Marz W.
Free fatty acids are independently associated with all-cause and cardiovascular mortality
in subjects with coronary artery disease.
J Clin Endocrinol Metab.
2006;
91
2542-2547
MissingFormLabel
- 22
Oliver MF, Opie LH.
Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias.
Lancet.
1994;
343
155-158
MissingFormLabel
- 23
Schroder NW, Heine H, Alexander C, Manukyan M, Eckert J, Hamann L, Gobel UB, Schumann RR.
Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides
and mediates innate immune responses.
J Immunol.
2004;
173
2683-2691
MissingFormLabel
- 24
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS.
TLR4 links innate immunity and fatty acid-induced insulin resistance.
J Clin Invest.
2006;
116
3015-3025
MissingFormLabel
- 25
Song MJ, Kim KH, Yoon JM, Kim JB.
Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes.
Biochem Biophys Res Commun.
2006;
346
739-745
MissingFormLabel
- 26
Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI.
Mechanism of free fatty acid-induced insulin resistance in humans.
J Clin Invest.
1996;
97
2859-2865
MissingFormLabel
- 27
Widmaier EP.
Metabolic feedback in mammalian endocrine systems.
Horm Metab Res.
1992;
24
147-153
MissingFormLabel
- 28
Quabbe HJ, Bratzke HJ, Siegers U, Elban K.
Studies on the relationship between plasma free fatty acids and growth hormone secretion
in man.
J Clin Invest.
1972;
51
2388-2398
MissingFormLabel
- 29
Casanueva FF, Villanueva L, Dieguez C, Diaz Y, Cabranes JA, Szoke B, Scanlon MF, Schally AV, Fernandez-Cruz A.
Free fatty acids block growth hormone (GH) releasing hormone-stimulated GH secretion
in man directly at the pituitary.
J Clin Endocrinol Metab.
1987;
65
634-642
MissingFormLabel
- 30
Buhl M, Gjedsted J, Granfeldt A, Larsen PO, Chew M, Moller N, Tonnesen E.
Circulating free fatty acids do not contribute to the acute systemic inflammatory
response. An experimental study in porcine endotoxaemia.
Basic Clin Pharmacol Toxicol.
2009;
104
1-8
MissingFormLabel
- 31
Harano Y, Ohtsuki M, Ida M, Kojima H, Harada M, Okanishi T, Kashiwagi A, Ochi Y, Uno S, Shigeta Y.
Direct automated assay method for serum or urine levels of ketone bodies.
Clin Chim Acta.
1985;
151
177-183
MissingFormLabel
- 32
Orskov H, Thomsen HG, Yde H.
Wick chromatography for rapid and reliable immunoassay of insulin, glucagon and growth
hormone.
Nature.
1968;
219
193-195
MissingFormLabel
- 33
Carstensen E, Yudkin JS.
Platelet catecholamine concentrations after short-term stress in normal subjects.
Clin Sci (Lond).
1994;
86
35-41
MissingFormLabel
- 34
Moller N, Schmitz O, Porksen N, Moller J, Jorgensen JO.
Dose-response studies on the metabolic effects of a growth hormone pulse in humans.
Metabolism.
1992;
41
172-175
MissingFormLabel
- 35
Van den Berghe G.
Novel insights into the neuroendocrinology of critical illness.
Eur J Endocrinol.
2000;
143
1-13
MissingFormLabel
- 36
Briard N, Rico-Gomez M, Guillaume V, Sauze N, Vuaroqueaux V, Dadoun F, Le BY, Oliver C, Dutour A.
Hypothalamic mediated action of free fatty acid on growth hormone secretion in sheep.
Endocrinology.
1998;
139
4811-4819
MissingFormLabel
- 37
McCann SM, Kimura M, Karanth S, Yu WH, Mastronardi CA, Rettori V.
The mechanism of action of cytokines to control the release of hypothalamic and pituitary
hormones in infection.
Ann N Y Acad Sci.
2000;
917
4-18
MissingFormLabel
- 38
Beishuizen A, Thijs LG.
Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis.
J Endotoxin Res.
2003;
9
3-24
MissingFormLabel
- 39
Migrenne S, Magnan C, Cruciani-Guglielmacci C.
Fatty acid sensing and nervous control of energy homeostasis.
Diabetes Metab.
2007;
33
177-182
MissingFormLabel
- 40
van der Poll T, Romijn JA, Endert E, Borm JJ, Buller HR, Sauerwein HP.
Tumor necrosis factor mimics the metabolic response to acute infection in healthy
humans.
Am J Physiol.
1991;
261
457-465
MissingFormLabel
- 41
Moller N, Beckwith R, Butler PC, Christensen NJ, Orskov H, Alberti KG.
Metabolic and hormonal responses to exogenous hyperthermia in man.
Clin Endocrinol (Oxf).
1989;
30
651-660
MissingFormLabel
- 42
Agwunobi AO, Reid C, Maycock P, Little RA, Carlson GL.
Insulin resistance and substrate utilization in human endotoxemia.
J Clin Endocrinol Metab.
2000;
85
3770-3778
MissingFormLabel
- 43
Vary TC, Drnevich D, Jurasinski C, Brennan Jr WA.
Mechanisms regulating skeletal muscle glucose metabolism in sepsis.
Shock.
1995;
3
403-410
MissingFormLabel
- 44
Randle PJ, Garland PB, Hales CN, Newsholme EA.
The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances
of diabetes mellitus.
Lancet.
1963;
1
785-789
MissingFormLabel
- 45
Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D.
Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance
rather than overproduction.
Am J Respir Crit Care Med.
1998;
157
1021-1026
MissingFormLabel
- 46
Vary TC, Siegel JH.
Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle
and liver.
Am J Physiol.
1989;
256
445
MissingFormLabel
Correspondence
M. Buhl
Medical Department M (Endocrinology and Diabetes)
Århus Sygehus, NBG
Bygning 1c, 1.sal
Nørrebrogade 44
8000 Århus C
Denmark
Telefon: +45 8949 2852
Fax: +45 8949 2740
eMail: m.buhl@ki.au.dk