Horm Metab Res 2010; 42(5): 340-347
DOI: 10.1055/s-0030-1248251
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

10-Day Hyperlipidemic Clamp in Cats: Effects on Insulin Sensitivity, Inflammation, and Glucose Metabolism-related Genes

E. Zini1 , M. Osto2 , D. Konrad3 , M. Franchini4 , N. S. Sieber-Ruckstuhl1 , K. Kaufmann1 , F. Guscetti5 , M. Ackermann4 , T. A. Lutz2 , C. E. Reusch1
  • 1Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
  • 2Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
  • 3Department of Endocrinology and Diabetology, University Children's Hospital, Zürich, Switzerland
  • 4Institute of Virology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
  • 5Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
Weitere Informationen

Publikationsverlauf

received 13.10.2009

accepted 18.01.2010

Publikationsdatum:
16. Februar 2010 (online)

Abstract

Obesity and hyperlipidemia are associated with impaired insulin sensitivity in human type 2 diabetes mellitus, possibly due to activation of a mild inflammatory response. Because obesity-induced insulin resistance predisposes cats to diabetes and because hyperlipidemia is a frequent concurrent finding, excess lipids may also impair insulin sensitivity in cats. Healthy cats (n=6) were infused with lipids (LipovenoesR 10%) for 10 days to clamp blood triglycerides at the approximate concentration of untreated feline diabetes (3–7 mmol/l). Controls received saline (n=5). On day 10, plasma adiponectin and proinflammatory markers were measured. Whole-body insulin sensitivity was calculated following an intravenous glucose tolerance test. Tissue mRNAs of glucose metabolism-related genes were quantified in subcutaneous and visceral fat, liver, and skeletal muscles. Accumulation of lipids was assessed in liver. At the termination of infusion, whole-body insulin sensitivity did not differ between groups. Compared to saline, cats infused with lipids had 50% higher plasma adiponectin and 2–3 times higher α1-acid glycoprotein and monocyte chemoattractant protein-1. Unexpectedly, lipid-infused cats had increased glucose transporter-4 (GLUT4) mRNA in the visceral fat, and increased peroxisome proliferative activated receptor-γ2 (PPARγ2) in subcutaneous fat; adiponectin expression was not affected in any tissue. Lipid-infused cats developed hepatic steatosis. Although hyperlipidemia induced systemic inflammation, whole-body insulin sensitivity was not impaired after 10 day infusion. Increased circulating adiponectin may have contributed to prevent insulin resistance, possibly by increasing GLUT4 and PPARγ2 transcripts in fat depots.

References

  • 1 Lutz TA, Rand JS. Pathogenesis of feline diabetes mellitus.  Vet Clin North Am Small Anim Pract. 1995;  25 527-552
  • 2 Cefalu WT. Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition.  ILAR J. 2006;  47 186-198
  • 3 Henson MS, O’Brien TD. Feline models of type 2 diabetes mellitus.  ILAR J. 2006;  47 234-242
  • 4 McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes.  Diabetes. 2002;  51 7-18
  • 5 Greenfield JR, Campbell LV. Relationship between inflammation, insulin resistance and type 2 diabetes: cause or effect?.  Curr Diabetes Rev. 2006;  2 195-211
  • 6 Fabris R, Nisoli E, Lombardi AM, Tonello C, Serra R, Granzotto M, Cusin I, Rohner-Jeanrenaud F, Federspil G, Carruba MO, Vettor R. Preferential channeling of energy fuels toward fat rather than muscle during high free fatty acid availability in rats.  Diabetes. 2001;  50 601-608
  • 7 Park E, Wong V, Guan X, Oprescu AI, Giacca A. Salicylate prevents hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo.  J Endocrinol. 2007;  195 323-331
  • 8 Lavoie F, Frisch F, Brassard P, Normand-Lauzière F, Cyr D, Gagnon R, Drouin R, Baillargeon JP, Carpentier AC. Relationship between total and high molecular weight adiponectin levels and plasma nonesterified fatty acid tolerance during enhanced intravascular triacylglycerol lipolysis in men.  J Clin Endocrinol Metab. 2009;  94 998-1004
  • 9 Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease.  Clin Biochem. 2009;  42 1331-1346
  • 10 Xiao C, Giacca A, Lewis GF. Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men.  Diabetologia. 2008;  51 139-146
  • 11 Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance.  J Clin Invest. 2006;  116 3015-3025
  • 12 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes.  J Clin Invest. 2005;  115 1111-1119
  • 13 Semple RK, Chatterjee VK, O’Rahilly S. PPAR gamma and human metabolic disease.  J Clin Invest. 2006;  116 581-589
  • 14 Fabris R, Nisoli E, Lombardi AM, Tonello C, Serra R, Granzotto M, Cusin I, Rohner-Jeanrenaud F, Federspil G, Carruba MO, Vettor R. Preferential channeling of energy fuels toward fat rather than muscle during high free fatty acid availability in rats.  Diabetes. 2001;  50 601-608
  • 15 Reusch CE, Haberer B. Evaluation of fructosamine in dogs and cats with hypo- or hyperproteinaemia, azotaemia, hyperlipidaemia and hyperbilirubinaemia.  Vet Rec. 2001;  148 370-376
  • 16 Han P, Zhang YY, Lu Y, He B, Zhang W, Xia F. Effects of different free fatty acids on insulin resistance in rats.  Hepatobiliary Pancreat Dis Int. 2008;  7 91-96
  • 17 Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, Defronzo RA, Cusi K. Dose-response effect of elevated plasma free fatty acid on insulin signaling.  Diabetes. 2005;  54 1640-1648
  • 18 Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans.  J Clin Invest. 1996;  97 2859-2865
  • 19 Roden M, Krssak M, Stingl H, Gruber S, Hofer A, Fürnsinn C, Moser E, Waldhäusl W. Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans.  Diabetes. 1999;  48 358-364
  • 20 Zini E, Osto M, Franchini M, Guscetti F, Donath MY, Perren A, Heller RS, Linscheid P, Bouwman M, Ackermann M, Lutz TA, Reusch CE. Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat.  Diabetologia. 2009;  52 336-346
  • 21 Appleton DJ, Rand JS, Sunvold GD. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.  J Feline Med Surg. 2005;  7 183-193
  • 22 Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.  Diabetes Care. 1999;  22 1462-1470
  • 23 Zini E, Linscheid P, Franchini M, Kaufmann K, Monnais E, Kutter AP, Ackermann M, Lutz TA, Reusch CE. Partial sequencing and expression of genes involved in glucose metabolism in adipose tissues and skeletal muscle of healthy cats.  Vet J. 2009;  180 66-70
  • 24 Kipar A, Leutenegger CM, Hetzel U, Akens MK, Mislin CN, Reinacher M, Lutz H. Cytokine mRNA levels in isolated feline monocytes.  Vet Immunol Immunopathol. 2001;  78 305-315
  • 25 Lane DJ. 16S/23S rRNA sequencing.. In: Stackebrandt E, and, Goodfellow M, (ed). Nucleic acids techniques in bacterial systematics. Chichester, United Kingdom: John Wiley & Sons; 1991: 115-147
  • 26 Storgaard H, Jensen CB, Björnholm M, Song XM, Madsbad S, Zierath JR, Vaag AA. Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes.  J Clin Endocrinol Metab. 2004;  89 1301-1311
  • 27 Salomaa V, Ahola I, Tuomilehto J, Aro A, Pietinen P, Korhonen HJ, Penttilä I. Fatty acid composition of serum cholesterol esters in different degrees of glucose intolerance: a population-based study.  Metabolism. 1990;  39 1285-1291
  • 28 Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids.  N Engl J Med. 1993;  328 238-244
  • 29 Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men.  Diabetologia. 1994;  37 1044-1050
  • 30 Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP, Denkins YM, Rood JC, Veldhuis J, Bray GA. Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults.  Diabetes Care. 2002;  25 1283-1288
  • 31 Noto A, Zahradka P, Yurkova N, Xie X, Truong H, Nitschmann E, Ogborn MR, Taylor CG. Dietary conjugated linoleic acid decreases adipocyte size and favorably modifies adipokine status and insulin sensitivity in obese, insulin-resistant rats.  Metabolism. 2007;  56 1601-1611
  • 32 Ceron JJ, Eckersall PD, Martýnez-Subiela S. Acute phase proteins in dogs and cats: current knowledge and future perspectives.  Vet Clin Pathol. 2005;  34 85-99
  • 33 Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion.  J Clin Endocrinol Metab. 2007;  92 1023-1033
  • 34 Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance.  Diabetologia. 2000;  43 1498-1506
  • 35 Wueest S, Rapold RA, Rytka JM, Schoenle EJ, Konrad D. Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice.  Diabetologia. 2009;  52 541-546
  • 36 Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human non-alcoholic steatohepatitis.  Am J Gastroenterol. 2008;  103 1372-1379
  • 37 Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, Imai Y, Nagai R, Kadowaki T. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome.  Diabetes Care. 2006;  29 1357-1362
  • 38 Hoenig M, Thomaseth K, Waldron M, Ferguson DC. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss.  Am J Physiol Regul Integr Comp Physiol. 2007;  292 R227-R234
  • 39 Trevaskis JL, Gawronska-Kozak B, Sutton GM, McNeil M, Stephens JM, Smith SR, Butler AA. Role of adiponectin and inflammation in insulin resistance of Mc3r and Mc4r knockout mice.  Obesity. 2007;  15 2664-2672
  • 40 Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 R1220-R1225
  • 41 Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L, Ding YY, Russell RG, Lindemann D, Hartley A, Baker GR, Obici S, Deshaies Y, Ludgate M, Rossetti L, Scherer PE. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity.  Endocrinology. 2004;  145 367-383
  • 42 Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes.  Diabetes. 2003;  52 1355-1363

Correspondence

E. Zini

Clinic for Small Animal Internal Medicine

Vetsuisse Faculty

University of Zürich

Winterthurerstraße 260

8057 Zürich

Switzerland

Telefon: +41/44/635 8746

Fax: +41/44/635 8930

eMail: ezini@vetclinics.uzh.ch

    >