Zusammenfassung
Die grundlegenden Mechanismen von Tumorentstehung, Tumorinvasion und Metastasierung
sind weiterhin nur teilweise aufgeklärt. Tumorstammzellen und die sogenannte Epithelio-Mesenchymale
Transition (EMT) sind an diesen onkologischen Phänomenen vermutlich zentral beteiligt.
Tumorstammzellen, die nach unserem derzeitigen Wissen bei der Tumorentstehung und
-persistenz eine wichtige Rolle spielen, werden anhand ihrer Eigenschaften operational
definiert. Die EMT bezeichnet die aberrante Aktivierung eines embryonalen Programms
in Tumorzellen an der Tumorinvasionsfront. Sie ist vermutlich bei der Tumorinvasion
und Metastasierung von Bedeutung. Aktuelle Untersuchungen haben gezeigt, dass EMT
und Tumorstammzelleigenschaften in engem Zusammenhang stehen. So ergeben sich neue
Erklärungsmodelle für Tumorentstehung und Metastasierung.
Abstract
The underlying mechanisms of cancer development, invasion and metastasis are still
only partly unraveled. Cancer stem cells (CSC) and the so-called epithelial-mesenchymal
transition (EMT) seem to contribute to these oncological phenomena. Cancer stem cells
which, according to our present knowledge, play an important role in tumour development
and persistence, are operationally defined. The embryonic programme of EMT is activated
aberrantly in cancer cells at the invasive front and seems to contribute to tumour
invasion and metastasis. Recent observations suggest that the EMT and CSC traits are
closely related. This provides new explanatory models for cancer development and metastasis.
Schlüsselwörter
Metastase - kolorektales Karzinom - Tumorwachstum
Key words
metastasis - colorectal carcinoma - tumour growth
Literatur
- 1
Clarke M F, Dick J E, Dirks P B et al.
Cancer stem cells--perspectives on current status and future directions: AACR Workshop
on cancer stem cells.
Cancer Res.
2006;
66
9339-9344
- 2
Porter E H, Berry R J.
The Efficient Design of Transplantable Tumour Assays.
Br J Cancer.
1963;
17
583-595
- 3
Bonnefoix T, Bonnefoix P, Verdiel P et al.
Fitting limiting dilution experiments with generalized linear models results in a
test of the single-hit Poisson assumption.
J Immunol Methods.
1996;
194
113-119
- 4
Singh S K, Clarke I D, Terasaki M et al.
Identification of a cancer stem cell in human brain tumors.
Cancer Res.
2003;
63
5821-5828
- 5
Ponti D, Costa A, Zaffaroni N et al.
Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor
cell properties.
Cancer Res.
2005;
65
5506-5511
- 6
Ricci-Vitiani L, Lombardi D G, Pilozzi E et al.
Identification and expansion of human colon-cancer-initiating cells.
Nature.
2007;
445
111-115
- 7
Gou S, Liu T, Wang C et al.
Establishment of clonal colony-forming assay for propagation of pancreatic cancer
cells with stem cell properties.
Pancreas.
2007;
34
429-435
- 8
Hamburger A W, Salmon S E.
Primary bioassay of human tumor stem cells.
Science.
1977;
197
461-463
- 9
Li C, Heidt D G, Dalerba P et al.
Identification of pancreatic cancer stem cells.
Cancer research.
2007;
67
1030-1037
- 10
Al-Hajj M, Wicha M S, Benito-Hernandez A et al.
Prospective identification of tumorigenic breast cancer cells.
Proc Natl Acad Sci USA.
2003;
100
3983-3988
- 11
Kurrey N K, Jalgaonkar S P, Joglekar A V et al.
Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated
apoptosis and acquiring a stem-like phenotype in ovarian cancer cells.
Stem cells (Dayton, Ohio).
2009;
27
2059-2068
- 12
Baumann M, Krause M, Hill R.
Exploring the role of cancer stem cells in radioresistance.
Nat Rev Cancer.
2008;
8
545-554
- 13
Yu F, Yao H, Zhu P et al.
let-7 regulates self renewal and tumorigenicity of breast cancer cells.
Cell.
2007;
131
1109-1123
- 14
Li X, Lewis M T, Huang J et al.
Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.
J Natl Cancer Inst.
2008;
100
672-679
- 15
Mueller M T, Hermann P C, Witthauer J et al.
Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic
cancer.
Gastroenterology.
2009;
137
1102-1113
- 16
Quintana E, Shackleton M, Sabel M S et al.
Efficient tumour formation by single human melanoma cells.
Nature.
2008;
456
593-598
- 17
Kelly P N, Dakic A, Adams J M et al.
Tumor growth need not be driven by rare cancer stem cells.
Science.
2007;
317
337
- 18
Neumeister V, Agarwal S, Bordeaux J et al.
In Situ Identification of Putative Cancer Stem Cells by Multiplexing ALDH1, CD44,
and Cytokeratin Identifies Breast Cancer Patients with Poor Prognosis.
Am J Pathol.
2010;
- 19
Hurt E M, Farrar W L.
Cancer stem cells: the seeds of metastasis?.
Mol Interv.
2008;
8
140-142
- 20
Lawson J C, Blatch G L, Edkins A L.
Cancer stem cells in breast cancer and metastasis.
Breast cancer research and treatment.
2009;
118
241-254
- 21
Shackleton M, Quintana E, Fearon E R, Morrison S J.
Heterogeneity in cancer: cancer stem cells versus clonal evolution.
Cell.
2009;
138
822-829
- 22
Vogelstein B, Fearon E R, Hamilton S R et al.
Genetic alterations during colorectal-tumor development.
New Engl J Med.
1988;
319
525-532
- 23
Gabbert H, Wagner R, Moll R et al.
Tumor dedifferentiation: an important step in tumor invasion.
Clin Exp Metastasis.
1985;
3
257-279
- 24
Hase K, Shatney C, Johnson D et al.
Prognostic value of tumor “budding” in patients with colorectal cancer.
Dis Colon Rect.
1993;
36
627-635
- 25
Carr I, Levy M, Watson P.
The invasive edge: invasion in colorectal cancer.
Clinical & experimental metastasis.
1986;
4
129-139
- 26
Ueno H, Mochizuki H, Hashiguchi Y et al.
Predictors of extrahepatic recurrence after resection of colorectal liver metastases.
Br J Surg.
2004;
91
327-333
- 27
Ueno H, Hase K, Hashiguchi Y et al.
Growth pattern in the muscular layer reflects the biological behaviour of colorectal
cancer.
Colorectal Dis.
2009;
11
951-959
- 28
Shinto E, Mochizuki H, Ueno H et al.
A novel classification of tumour budding in colorectal cancer based on the presence
of cytoplasmic pseudo-fragments around budding foci.
Histopathology.
2005;
47
25-31
- 29
Deinlein P, Reulbach U, Stolte M et al.
[Risk factors for lymphatic metastasis from pT1 colorectal adenocarcinoma].
Der Pathologe.
2003;
24
387-393
- 30
Wang L M, Kevans D, Mulcahy H et al.
Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer.
Am J Surg Pathol.
2009;
33
134-141
- 31
Kazama S, Watanabe T, Ajioka Y et al.
Tumour budding at the deepest invasive margin correlates with lymph node metastasis
in submucosal colorectal cancer detected by anticytokeratin antibody CAM5.2.
Br J Cancer.
2006;
94
293-298
- 32
Thiery J P, Acloque H, Huang R Y et al.
Epithelial-mesenchymal transitions in development and disease.
Cell.
2009;
139
871-890
- 33
Zeisberg M, Neilson E G.
Biomarkers for epithelial-mesenchymal transitions.
J Clin Invest.
2009;
119
1429-1437
- 34
Mani S A, Guo W, Liao M J et al.
The epithelial-mesenchymal transition generates cells with properties of stem cells.
Cell.
2008;
133
704-715
- 35
Morel A P, Lievre M, Thomas C et al.
Generation of breast cancer stem cells through epithelial-mesenchymal transition.
PloS one.
2008;
3
e2888
- 36
Wellner U, Schubert J, Burk U C et al.
The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.
Nat Cell Biol.
2009;
11
1487-1495
- 37
Brabletz T, Jung A, Spaderna S et al.
Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression.
Nat Rev Cancer.
2005;
5
744-749
- 38
Thiery J P.
Epithelial-mesenchymal transitions in tumour progression.
Nature reviews.
2002;
2
442-454
- 39
Gunther K, Brabletz T, Dworak O et al.
[Beta-catenin expression and its significance for metastasis in curatively operated
rectum carcinoma].
Langenbecks Arch Chir (Supplement Kongressband Deutsche Gesellschaft fur Chirurgie).
1998;
115
1380-1382
- 40
Brabletz T, Jung A, Hermann K et al.
Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized
predominantly at the invasion front.
Pathol Res Pract.
1998;
194
701-704
- 41
Gunther K, Brabletz T, Kraus C et al.
Predictive value of nuclear beta-catenin expression for the occurrence of distant
metastases in rectal cancer.
Dis Colon Rectum.
1998;
41
1256-1261
- 42
Kirchner T, Brabletz T.
Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence.
Analogies with embryonic gastrulation.
Am J Pathol.
2000;
157
1113-1121
- 43
Jung A, Schrauder M, Oswald U et al.
The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear
beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation.
Am J Pathol.
2001;
159
1613-1617
- 44
Brabletz T, Jung A, Reu S et al.
Variable beta-catenin expression in colorectal cancers indicates tumor progression
driven by the tumor environment.
Proc Natl Acad Sci USA.
2001;
98
10356-10361
- 45
Korinek V, Barker N, Moerer P et al.
Depletion of epithelial stem-cell compartments in the small intestine of mice lacking
Tcf-4.
Nat Genet.
1998;
19
379-383
- 46
Barker N, van Es J H, Kuipers J et al.
Identification of stem cells in small intestine and colon by marker gene Lgr5.
Nature.
2007;
449
1003-1007
- 47
Barker N, Huch M, Kujala P et al.
Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric
units in vitro.
Cell Stem Cell.
2010;
6
25-36
- 48
Jaks V, Barker N, Kasper M et al.
Lgr5 marks cycling, yet long-lived, hair follicle stem cells.
Nat Genet.
2008;
40
1291-1299
- 49
Spaderna S, Schmalhofer O, Hlubek F et al.
A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival
in colorectal cancer.
Gastroenterology.
2006;
131
830-840
- 50
Spaderna S, Schmalhofer O, Wahlbuhl M et al.
The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in
cancer.
Cancer Res.
2008;
68
537-544
- 51
Shimono Y, Zabala M, Cho R W et al.
Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.
Cell.
2009;
138
592-603
- 52
Sharma S V, Haber D A, Settleman J.
Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer
agents.
Nat Rev Cancer.
2010;
10
241-253
Dr. Ulrich Friedrich Wellner
Universitätsklinik Freiburg · Allgemein- und Viszeralchirurgie
Hugstetter Str. 55
79106 Freiburg
Deutschland
Telefon: +49 / 7 61 / 2 70 23 56
Fax: +49 / 7 61 / 2 70 28 08
eMail: ulrich.wellner@uniklinik-freiburg.de