Semin Liver Dis 2010; 30(1): 087-098
DOI: 10.1055/s-0030-1247135
© Thieme Medical Publishers

Mouse Models of Hepatocellular Carcinoma

Nelson Fausto1 , Jean S. Campbell1
  • 1Department of Pathology, University of Washington, Seattle, Washington
Further Information

Publication History

Publication Date:
19 February 2010 (online)


The etiology of liver cancer is well known, but despite recent progress in the application of molecular techniques for the analysis of the development of these tumors, we still lack precise knowledge about pathogenesis of hepatocellular carcinoma (HCC). Animal models can provide essential knowledge about HCC pathogenesis, particularly if they mimic the tissue environment in which human tumors develop. The synergism between studies in animal models and human tumors is strengthened by using comparative genomic analysis to identify genes and pathways that are critical for both mouse and human oncogenesis. In this article, the authors discuss some selective examples of constitutive, conditional, and inducible models of HCC development, and briefly describe the genetic manipulations required for engineering these models and some new techniques used for gene screening in HCC. The authors focus on models that best correlate with the human disease and offer important insights into the pathogenesis of HCC.


  • 1 Farber E. Ethionine carcinogenesis.  Adv Cancer Res. 1963;  7 383-474
  • 2 Pitot H C. The natural history of neoplastic development: the relation of experimental models to human cancer.  Cancer. 1982;  49(6) 1206-1211
  • 3 Price J M, Harman J W, Miller E C, Miller J A. Progressive microscopic alterations in the livers of rats fed the hepatic carcinogens 3′-methyl-4-dimethylaminoazobenzene and 4′-fluoro-4-dimethylaminoazobenzene.  Cancer Res. 1952;  12(3) 192-200
  • 4 Solt D B, Cayama E, Tsuda H, Enomoto K, Lee G, Farber E. Promotion of liver cancer development by brief exposure to dietary 2-acetylaminofluorene plus partial hepatectomy or carbon tetrachloride.  Cancer Res. 1983;  43(1) 188-191
  • 5 Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene.  Cancer Res. 1956;  16(2) 142-148
  • 6 Fausto N, Campbell J S. The role of hepatocytes and oval cells in liver regeneration and repopulation.  Mech Dev. 2003;  120(1) 117-130
  • 7 Gossen M, Bujard H. Studying gene function in eukaryotes by conditional gene inactivation.  Annu Rev Genet. 2002;  36 153-173
  • 8 Hardouin S N, Nagy A. Mouse models for human disease.  Clin Genet. 2000;  57(4) 237-244
  • 9 Zender L, Spector M S, Xue W et al.. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.  Cell. 2006;  125(7) 1253-1267
  • 10 Keng V W, Villanueva A, Chiang D Y et al.. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma.  Nat Biotechnol. 2009;  27(3) 264-274
  • 11 Hoshida Y, Nijman S M, Kobayashi M et al.. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma.  Cancer Res. 2009;  69(18) 7385-7392
  • 12 Katoh H, Ojima H, Kokubu A et al.. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets.  Gastroenterology. 2007;  133(5) 1475-1486
  • 13 Lee J S, Chu I S, Mikaelyan A et al.. Application of comparative functional genomics to identify best-fit mouse models to study human cancer.  Nat Genet. 2004;  36(12) 1306-1311
  • 14 Boyault S, Rickman D S, de Reyniès A et al.. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.  Hepatology. 2007;  45(1) 42-52
  • 15 Campbell J S, Johnson M M, Bauer R L et al.. Targeting stromal cells for the treatment of platelet-derived growth factor C-induced hepatocellular carcinogenesis.  Differentiation. 2007;  75(9) 843-852
  • 16 Hoshida Y, Villanueva A, Kobayashi M et al.. Gene expression in fixed tissues and outcome in hepatocellular carcinoma.  N Engl J Med. 2008;  359(19) 1995-2004
  • 17 Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research.  Int J Exp Pathol. 2009;  90(4) 367-386
  • 18 Newell P, Villanueva A, Friedman S L, Koike K, Llovet J M. Experimental models of hepatocellular carcinoma.  J Hepatol. 2008;  48(5) 858-879
  • 19 Lee J S, Grisham J W, Thorgeirsson S S. Comparative functional genomics for identifying models of human cancer.  Carcinogenesis. 2005;  26(6) 1013-1020
  • 20 Verna L, Whysner J, Williams G M. N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation.  Pharmacol Ther. 1996;  71(1-2) 57-81
  • 21 Kaina B, Christmann M, Naumann S, Roos W P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents.  DNA Repair (Amst). 2007;  6(8) 1079-1099
  • 22 Vesselinovitch S D, Rao K V, Mihailovich N. Neoplastic response of mouse tissues during perinatal age periods and its significance in chemical carcinogenesis.  Natl Cancer Inst Monogr. 1979;  51(51) 239-250
  • 23 Hacker H J, Mtiro H, Bannasch P, Vesselinovitch S D. Histochemical profile of mouse hepatocellular adenomas and carcinomas induced by a single dose of diethylnitrosamine.  Cancer Res. 1991;  51(7) 1952-1958
  • 24 Vesselinovitch S D, Hacker H J, Bannasch P. Histochemical characterization of focal hepatic lesions induced by single diethylnitrosamine treatment in infant mice.  Cancer Res. 1985;  45(6) 2774-2780
  • 25 Vesselinovitch S D, Mihailovich N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse.  Cancer Res. 1983;  43(9) 4253-4259
  • 26 Riehle K J, Campbell J S, McMahan R S et al.. Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3.  J Exp Med. 2008;  205(1) 91-103
  • 27 Ogata H, Kobayashi T, Chinen T et al.. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis.  Gastroenterology. 2006;  131(1) 179-193
  • 28 Teoh N C, Dan Y Y, Swisshelm K et al.. Defective DNA strand break repair causes chromosomal instability and accelerates liver carcinogenesis in mice.  Hepatology. 2008;  47(6) 2078-2088
  • 29 Eder J P, Vande Woude G F, Boerner S A, LoRusso P M. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer.  Clin Cancer Res. 2009;  15(7) 2207-2214
  • 30 Liu M L, Mars W M, Michalopoulos G K. Hepatocyte growth factor inhibits cell proliferation in vivo of rat hepatocellular carcinomas induced by diethylnitrosamine.  Carcinogenesis. 1995;  16(4) 841-843
  • 31 Nakanishi C, Moriuchi A, Ido A et al.. Effect of hepatocyte growth factor on endogenous hepatocarcinogenesis in rats fed a choline-deficient L-amino acid-defined diet.  Oncol Rep. 2006;  16(1) 25-31
  • 32 Marx-Stoelting P, Borowiak M, Knorpp T, Birchmeier C, Buchmann A, Schwarz M. Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor c-Met.  Int J Cancer. 2009;  124(8) 1767-1772
  • 33 Takami T, Kaposi-Novak P, Uchida K et al.. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis.  Cancer Res. 2007;  67(20) 9844-9851
  • 34 Nakatani T, Roy G, Fujimoto N, Asahara T, Ito A. Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprorelin.  Jpn J Cancer Res. 2001;  92(3) 249-256
  • 35 Naugler W E, Sakurai T, Kim S et al.. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production.  Science. 2007;  317(5834) 121-124
  • 36 Lee J S, Heo J, Libbrecht L et al.. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.  Nat Med. 2006;  12(4) 410-416
  • 37 Shinozuka H, Lombardi B, Sell S, Iammarino R M. Enhancement of DL-ethionine-induced liver carcinogenesis in rats fed a choline-devoid diet.  J Natl Cancer Inst. 1978;  61(3) 813-817
  • 38 Hayner N T, Braun L, Yaswen P, Brooks M, Fausto N. Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers.  Cancer Res. 1984;  44(1) 332-338
  • 39 Yaswen P, Hayner N T, Fausto N. Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and preneoplastic livers.  Cancer Res. 1984;  44(1) 324-331
  • 40 Akhurst B, Croager E J, Farley-Roche C A et al.. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver.  Hepatology. 2001;  34(3) 519-522
  • 41 Knight B, Yeoh G C, Husk K L et al.. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice.  J Exp Med. 2000;  192(12) 1809-1818
  • 42 Knight B, Tirnitz-Parker J E, Olynyk J K. C-kit inhibition by imatinib mesylate attenuates progenitor cell expansion and inhibits liver tumor formation in mice.  Gastroenterology. 2008;  135(3) 969-979, 979, e1
  • 43 Tirnitz-Parker J E, Tonkin J N, Knight B, Olynyk J K, Yeoh G C. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet.  Int J Biochem Cell Biol. 2007;  39(12) 2226-2239
  • 44 Nakae D, Yoshiji H, Mizumoto Y et al.. High incidence of hepatocellular carcinomas induced by a choline deficient L-amino acid defined diet in rats.  Cancer Res. 1992;  52(18) 5042-5045
  • 45 Denda A, Kitayama W, Kishida H et al.. Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6J male mice given a choline-deficient, L-amino acid-defined diet.  Jpn J Cancer Res. 2002;  93(2) 125-132
  • 46 Webber E M, Wu J C, Wang L, Merlino G, Fausto N. Overexpression of transforming growth factor-alpha causes liver enlargement and increased hepatocyte proliferation in transgenic mice.  Am J Pathol. 1994;  145(2) 398-408
  • 47 Jhappan C, Stahle C, Harkins R N, Fausto N, Smith G H, Merlino G T. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas.  Cell. 1990;  61(6) 1137-1146
  • 48 Lee G H, Merlino G, Fausto N. Development of liver tumors in transforming growth factor alpha transgenic mice.  Cancer Res. 1992;  52(19) 5162-5170
  • 49 Takagi H, Sharp R, Hammermeister C et al.. Molecular and genetic analysis of liver oncogenesis in transforming growth factor alpha transgenic mice.  Cancer Res. 1992;  52(19) 5171-5177
  • 50 Murakami H, Sanderson N D, Nagy P, Marino P A, Merlino G, Thorgeirsson S S. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis.  Cancer Res. 1993;  53(8) 1719-1723
  • 51 Calvisi D F, Thorgeirsson S S. Molecular mechanisms of hepatocarcinogenesis in transgenic mouse models of liver cancer.  Toxicol Pathol. 2005;  33(1) 181-184
  • 52 Calvisi D F, Factor V M, Ladu S, Conner E A, Thorgeirsson S S. Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice.  Gastroenterology. 2004;  126(5) 1374-1386
  • 53 Factor V M, Kiss A, Woitach J T, Wirth P J, Thorgeirsson S S. Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis.  J Biol Chem. 1998;  273(25) 15846-15853
  • 54 Gilbertson D G, Duff M E, West J W et al.. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor.  J Biol Chem. 2001;  276(29) 27406-27414
  • 55 Campbell J S, Hughes S D, Gilbertson D G et al.. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma.  Proc Natl Acad Sci U S A. 2005;  102(9) 3389-3394
  • 56 Baron U, Gossen M, Bujard H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential.  Nucleic Acids Res. 1997;  25(14) 2723-2729
  • 57 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.  Proc Natl Acad Sci U S A. 1992;  89(12) 5547-5551
  • 58 Shachaf C M, Kopelman A M, Arvanitis C et al.. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer.  Nature. 2004;  431(7012) 1112-1117
  • 59 Kota J, Chivukula R R, O'Donnell K A et al.. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.  Cell. 2009;  137(6) 1005-1017
  • 60 Wang Y, DeMayo F J, Tsai S Y, O'Malley B W. Ligand-inducible and liver-specific target gene expression in transgenic mice.  Nat Biotechnol. 1997;  15(3) 239-243
  • 61 Chaisson M L, Brooling J T, Ladiges W, Tsai S, Fausto N. Hepatocyte-specific inhibition of NF-kappaB leads to apoptosis after TNF treatment, but not after partial hepatectomy.  J Clin Invest. 2002;  110(2) 193-202
  • 62 Hayashi S, McMahon A P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse.  Dev Biol. 2002;  244(2) 305-318
  • 63 Tumurbaatar B, Sun Y, Chan T, Sun J. Cre-estrogen receptor-mediated hepatitis C virus structural protein expression in mice.  J Virol Methods. 2007;  146(1-2) 5-13
  • 64 Braun L, Goyette M, Yaswen P, Thompson N L, Fausto N. Growth in culture and tumorigenicity after transfection with the ras oncogene of liver epithelial cells from carcinogen-treated rats.  Cancer Res. 1987;  47(15) 4116-4124
  • 65 Goyette M, Faris R, Braun L, Hixson D, Fausto N. Expression of hepatocyte and oval cell antigens in hepatocellular carcinomas produced by oncogene-transfected liver epithelial cells.  Cancer Res. 1990;  50(15) 4809-4817
  • 66 Zender L, Xue W, Zuber J et al.. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer.  Cell. 2008;  135(5) 852-864
  • 67 Lee J S, Thorgeirsson S S. Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets.  Gastroenterology. 2004;  127(5, Suppl 1) S51-S55
  • 68 Lee J S, Thorgeirsson S S. Comparative and integrative functional genomics of HCC.  Oncogene. 2006;  25(27) 3801-3809
  • 69 Zucman-Rossi J, Laurent-Puig P. Genetic diversity of hepatocellular carcinomas and its potential impact on targeted therapies.  Pharmacogenomics. 2007;  8(8) 997-1003
  • 70 Weiskirchen R, Liedtke C, Trautwein C. When sleeping beauty wakes up and jumps into a cancer-minded environment.  Hepatology. 2009;  49(6) 2122-2124

Nelson FaustoM.D. 

Department of Pathology, University of Washington School of Medicine

Seattle, WA 98195