Semin Liver Dis 2010; 30(1): 075-086
DOI: 10.1055/s-0030-1247134
© Thieme Medical Publishers

Identification of Novel Oncogenes and Tumor Suppressors in Hepatocellular Carcinoma

Sandrine Imbeaud1 , 2 , Yannick Ladeiro1 , 2 , Jessica Zucman-Rossi1 , 2 , 3
  • 1Inserm, U674, Génomique Fonctionnelle des Tumeurs Solides, Paris, France
  • 2Université Paris Descartes, Paris, France
  • 3AP-HP, HEGP, Service d'oncologie médicale, Paris, France
Further Information

Publication History

Publication Date:
19 February 2010 (online)


Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma (HCC) is challenging, both because of the tumor complexity and the difficulty in integrating the very large amount of data provided by different approaches. The authors consider it very important to identify new pathways of carcinogenesis and to understand the mechanisms underlying their alteration in tumors to design personalized treatments for HCC. In this review, the main global genomic approaches are considered in detail. The authors present a catalog of the most important oncogenes and tumor suppressor genes that have been found to be mutated in HCC and hepatocellular adenoma. They also review the results provided by transcriptome and miRNA profiling, in terms of molecular tumor classification. The authors anticipate that high-throughput sequencing will considerably refine the description of the genetic alterations in HCC. They also predict that systems biology, the recently developed interdisciplinary research field, will be very important to integrate the colossal amounts of data generated by the new technologies and to identify useful clinical applications.


  • 1 Parkin D M. Global cancer statistics in the year 2000.  Lancet Oncol. 2001;  2(9) 533-543
  • 2 El-Serag H B. Hepatocellular carcinoma: recent trends in the United States.  Gastroenterology. 2004;  127(5, Suppl 1) S27-S34
  • 3 McGlynn K A, London W T. Epidemiology and natural history of hepatocellular carcinoma.  Best Pract Res Clin Gastroenterol. 2005;  19(1) 3-23
  • 4 Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening.  Semin Liver Dis. 2005;  25(2) 143-154
  • 5 Taylor-Robinson S D, Foster G R, Arora S, Hargreaves S, Thomas H C. Increase in primary liver cancer in the UK, 1979-94.  Lancet. 1997;  350(9085) 1142-1143
  • 6 Donato F, Gelatti U, Limina R M, Fattovich G. Southern Europe as an example of interaction between various environmental factors: a systematic review of the epidemiologic evidence.  Oncogene. 2006;  25(27) 3756-3770
  • 7 Seeff L B, Hoofnagle J H. Epidemiology of hepatocellular carcinoma in areas of low hepatitis B and hepatitis C endemicity.  Oncogene. 2006;  25(27) 3771-3777
  • 8 Bralet M P, Régimbeau J M, Pineau P et al.. Hepatocellular carcinoma occurring in nonfibrotic liver: epidemiologic and histopathologic analysis of 80 French cases.  Hepatology. 2000;  32(2) 200-204
  • 9 Lee J S, Chu I S, Heo J et al.. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling.  Hepatology. 2004;  40(3) 667-676
  • 10 Lee J S, Heo J, Libbrecht L et al.. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.  Nat Med. 2006;  12(4) 410-416
  • 11 Villanueva A, Newell P, Chiang D Y, Friedman S L, Llovet J M. Genomics and signaling pathways in hepatocellular carcinoma.  Semin Liver Dis. 2007;  27(1) 55-76
  • 12 Boyault S, Rickman D S, de Reyniès A et al.. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.  Hepatology. 2007;  45(1) 42-52
  • 13 Cieply B, Zeng G, Proverbs-Singh T, Geller D A, Monga S P. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene.  Hepatology. 2009;  49(3) 821-831
  • 14 de La Coste A, Romagnolo B, Billuart P et al.. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas.  Proc Natl Acad Sci U S A. 1998;  95(15) 8847-8851
  • 15 Huang H, Fujii H, Sankila A et al.. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection.  Am J Pathol. 1999;  155(6) 1795-1801
  • 16 Legoix P, Bluteau O, Bayer J et al.. Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity.  Oncogene. 1999;  18(27) 4044-4046
  • 17 Miyoshi Y, Iwao K, Nagasawa Y et al.. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3.  Cancer Res. 1998;  58(12) 2524-2527
  • 18 Taniguchi K, Roberts L R, Aderca I N et al.. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas.  Oncogene. 2002;  21(31) 4863-4871
  • 19 Terris B, Pineau P, Bregeaud L et al.. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas.  Oncogene. 1999;  18(47) 6583-6588
  • 20 Wong C M, Fan S T, Ng I O. Beta-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance.  Cancer. 2001;  92(1) 136-145
  • 21 Ishizaki Y, Ikeda S, Fujimori M et al.. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas.  Int J Oncol. 2004;  24(5) 1077-1083
  • 22 Kim Y D, Park C H, Kim H S et al.. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma.  J Gastroenterol Hepatol. 2008;  23(1) 110-118
  • 23 Laurent-Puig P, Legoix P, Bluteau O et al.. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis.  Gastroenterology. 2001;  120(7) 1763-1773
  • 24 Park J Y, Park W S, Nam S W et al.. Mutations of beta-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis.  Liver Int. 2005;  25(1) 70-76
  • 25 Satoh S, Daigo Y, Furukawa Y et al.. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1.  Nat Genet. 2000;  24(3) 245-250
  • 26 Zucman-Rossi J, Benhamouche S, Godard C et al.. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas.  Oncogene. 2007;  26(5) 774-780
  • 27 Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa.  , [see comments] Nature. 1991;  350(6317) 429-431
  • 28 Hayashi H, Sugio K, Matsumata T, Adachi E, Takenaka K, Sugimachi K. The clinical significance of p53 gene mutation in hepatocellular carcinomas from Japan.  Hepatology. 1995;  22(6) 1702-1707
  • 29 Honda K, Sbisà E, Tullo A et al.. p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation.  Br J Cancer. 1998;  77(5) 776-782
  • 30 Hussain S P, Schwank J, Staib F, Wang X W, Harris C C. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer.  Oncogene. 2007;  26(15) 2166-2176
  • 31 Challen C, Guo K, Collier J D, Cavanagh D, Bassendine M F. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas.  J Hepatol. 1992;  14(2-3) 342-346
  • 32 Leon M, Kew M C. Analysis of ras gene mutations in hepatocellular carcinoma in southern African blacks.  Anticancer Res. 1995;  15(3) 859-861
  • 33 Takada S, Koike K. Activated N-ras gene was found in human hepatoma tissue but only in a small fraction of the tumor cells.  Oncogene. 1989;  4(2) 189-193
  • 34 Tsuda H, Hirohashi S, Shimosato Y, Ino Y, Yoshida T, Terada M. Low incidence of point mutation of c-Ki-ras and N-ras oncogenes in human hepatocellular carcinoma.  Jpn J Cancer Res. 1989;  80(3) 196-199
  • 35 Weihrauch M, Benicke M, Lehnert G, Wittekind C, Wrbitzky R, Tannapfel A. Frequent k- ras -2 mutations and p16(INK4A)methylation in hepatocellular carcinomas in workers exposed to vinyl chloride.  Br J Cancer. 2001;  84(7) 982-989
  • 36 Bluteau O, Jeannot E, Bioulac-Sage P et al.. Bi-allelic inactivation of TCF1 in hepatic adenomas.  Nat Genet. 2002;  32(2) 312-315
  • 37 Rebouissou S, Amessou M, Couchy G et al.. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours.  Nature. 2009;  457(7226) 200-204
  • 38 Zhang X, Xu H J, Murakami Y et al.. Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma.  Cancer Res. 1994;  54(15) 4177-4182
  • 39 Chen T C, Hsieh L L, Kuo T T et al.. p16INK4 gene mutation and allelic loss of chromosome 9p21-22 in Taiwanese hepatocellular carcinoma.  Anticancer Res. 2000;  20(3A, 3A) 1621-1626
  • 40 Kita R, Nishida N, Fukuda Y et al.. Infrequent alterations of the p16INK4A gene in liver cancer.  Int J Cancer. 1996;  67(2) 176-180
  • 41 Liew C T, Li H M, Lo K W et al.. High frequency of p16INK4A gene alterations in hepatocellular carcinoma.  Oncogene. 1999;  18(3) 789-795
  • 42 Lee J W, Soung Y H, Kim S Y et al.. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas.  Oncogene. 2005;  24(8) 1477-1480
  • 43 Tanaka Y, Kanai F, Tada M et al.. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients.  Oncogene. 2006;  25(20) 2950-2952
  • 44 Kawate S, Takenoshita S, Ohwada S et al.. Mutation analysis of transforming growth factor beta type II receptor, Smad2, and Smad4 in hepatocellular carcinoma.  Int J Oncol. 1999;  14(1) 127-131
  • 45 Yakicier M C, Irmak M B, Romano A, Kew M, Ozturk M. Smad2 and Smad4 gene mutations in hepatocellular carcinoma.  Oncogene. 1999;  18(34) 4879-4883
  • 46 Bae J J, Rho J W, Lee T J et al.. Loss of heterozygosity on chromosome 10q23 and mutation of the phosphatase and tensin homolog deleted from chromosome 10 tumor suppressor gene in Korean hepatocellular carcinoma patients.  Oncol Rep. 2007;  18(4) 1007-1013
  • 47 Fujiwara Y, Hoon D S, Yamada T et al.. PTEN / MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinomas.  Jpn J Cancer Res. 2000;  91(3) 287-292
  • 48 Kawamura N, Nagai H, Bando K et al.. PTEN/MMAC1 mutations in hepatocellular carcinomas: somatic inactivation of both alleles in tumors.  Jpn J Cancer Res. 1999;  90(4) 413-418
  • 49 Wang Y, Lee A T, Ma J Z et al.. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target.  J Biol Chem. 2008;  283(19) 13205-13215
  • 50 Yao Y J, Ping X L, Zhang H et al.. PTEN/MMAC1 mutations in hepatocellular carcinomas.  Oncogene. 1999;  18(20) 3181-3185
  • 51 De Souza A T, Hankins G R, Washington M K, Orton T C, Jirtle R L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity.  Nat Genet. 1995;  11(4) 447-449
  • 52 Oka Y, Waterland R A, Killian J K et al.. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan.  Hepatology. 2002;  35(5) 1153-1163
  • 53 Yamada T, De Souza A T, Finkelstein S, Jirtle R L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis.  Proc Natl Acad Sci U S A. 1997;  94(19) 10351-10355
  • 54 Park W S, Dong S M, Kim S Y et al.. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas.  Cancer Res. 1999;  59(2) 307-310
  • 55 Yang D H, Huang W, Cui J et al.. The relationship between point mutation and abnormal expression of c-fms oncogene in hepatocellular carcinoma.  Hepatobiliary Pancreat Dis Int. 2004;  3(1) 86-89
  • 56 Kim C J, Cho Y G, Park J Y et al.. Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas.  Eur J Cancer. 2004;  40(1) 136-141
  • 57 Pelletier L, Rebouissou S, Paris A et al.. Loss of HNF1a function in human hepatocellular adenomas leads to aberrant activation of signaling pathways involved in tumorigenesis.  Hepatology. 2009;  51(2) 557-566
  • 58 Zucman-Rossi J, Jeannot E, Nhieu J T et al.. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC.  Hepatology. 2006;  43(3) 515-524
  • 59 Bioulac-Sage P, Rebouissou S, Thomas C et al.. Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry.  Hepatology. 2007;  46(3) 740-748
  • 60 Chen Y W, Jeng Y M, Yeh S H, Chen P J. P53 gene and Wnt signaling in benign neoplasms: beta-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia.  Hepatology. 2002;  36(4 Pt 1) 927-935
  • 61 Van der Borght S, Libbrecht L, Katoonizadeh A et al.. Nuclear beta-catenin staining and absence of steatosis are indicators of hepatocellular adenomas with an increased risk of malignancy.  Histopathology. 2007;  51(6) 855-856
  • 62 Cavard C, Colnot S, Audard V et al.. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology.  Future Oncol. 2008;  4(5) 647-660
  • 63 Nagafuchi A, Takeichi M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin.  Cell Regul. 1989;  1(1) 37-44
  • 64 Micsenyi A, Tan X, Sneddon T, Luo J H, Michalopoulos G K, Monga S P. Beta-catenin is temporally regulated during normal liver development.  Gastroenterology. 2004;  126(4) 1134-1146
  • 65 Suksaweang S, Lin C M, Jiang T X, Hughes M W, Widelitz R B, Chuong C M. Morphogenesis of chicken liver: identification of localized growth zones and the role of beta-catenin/Wnt in size regulation.  Dev Biol. 2004;  266(1) 109-122
  • 66 Monga S P, Monga H K, Tan X, Mulé K, Pediaditakis P, Michalopoulos G K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification.  Gastroenterology. 2003;  124(1) 202-216
  • 67 Benhamouche S, Decaens T, Godard C et al.. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver.  Dev Cell. 2006;  10(6) 759-770
  • 68 Cadoret A, Ovejero C, Terris B et al.. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism.  Oncogene. 2002;  21(54) 8293-8301
  • 69 Monga S P, Pediaditakis P, Mule K, Stolz D B, Michalopoulos G K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration.  Hepatology. 2001;  33(5) 1098-1109
  • 70 Tan X, Behari J, Cieply B, Michalopoulos G K, Monga S P. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration.  Gastroenterology. 2006;  131(5) 1561-1572
  • 71 Audard V, Grimber G, Elie C et al.. Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations.  J Pathol. 2007;  212(3) 345-352
  • 72 Fujito T, Sasaki Y, Iwao K et al.. Prognostic significance of beta-catenin nuclear expression in hepatocellular carcinoma.  Hepatogastroenterology. 2004;  51(58) 921-924
  • 73 Hsu H C, Jeng Y M, Mao T L, Chu J S, Lai P L, Peng S Y. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis.  Am J Pathol. 2000;  157(3) 763-770
  • 74 Chiang D Y, Villanueva A, Hoshida Y et al.. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.  Cancer Res. 2008;  68(16) 6779-6788
  • 75 Ovejero C, Cavard C, Périanin A et al.. Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of beta-catenin in the liver.  Hepatology. 2004;  40(1) 167-176
  • 76 Lieu H T, Batteux F, Simon M T et al.. HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice.  Hepatology. 2005;  42(3) 618-626
  • 77 Renard C A, Labalette C, Armengol C et al.. Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer.  Cancer Res. 2007;  67(3) 901-910
  • 78 Yamashita T, Ji J, Budhu A et al.. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features.  Gastroenterology. 2009;  136(3) 1012-1024
  • 79 Baum J K, Bookstein J J, Holtz F, Klein E W. Possible association between benign hepatomas and oral contraceptives.  Lancet. 1973;  2(7835) 926-929
  • 80 Christopherson W M, Mays E T, Barrows G. A clinicopathologic study of steroid-related liver tumors.  Am J Surg Pathol. 1977;  1(1) 31-41
  • 81 Edmondson H A, Henderson B, Benton B. Liver-cell adenomas associated with use of oral contraceptives.  N Engl J Med. 1976;  294(9) 470-472
  • 82 Lansing P B, McQuitty J T, Bradburn D M. Benign liver tumors: what is their relationship to oral contraceptives?.  Am Surg. 1976;  42(10) 744-760
  • 83 Rooks J B, Ory H W, Ishak K G et al.. Epidemiology of hepatocellular adenoma. The role of oral contraceptive use.  JAMA. 1979;  242(7) 644-648
  • 84 Vana J, Murphy G P, Aronoff B L, Baker H W. Primary liver tumors and oral contraceptives. Results of a survey.  JAMA. 1977;  238(20) 2154-2158
  • 85 Kent D R, Nissen E D, Nissen S E, Ziehm D J. Effect of pregnancy on liver tumor associated with oral contraceptives.  Obstet Gynecol. 1978;  51(2) 148-151
  • 86 Kerlin P, Davis G L, McGill D B, Weiland L H, Adson M A, Sheedy II P F. Hepatic adenoma and focal nodular hyperplasia: clinical, pathologic, and radiologic features.  Gastroenterology. 1983;  84(5 Pt 1) 994-1002
  • 87 Foster J H, Berman M M. The malignant transformation of liver cell adenomas.  Arch Surg. 1994;  129(7) 712-717
  • 88 Grigsby P, Meyer J S, Sicard G A, Huggins M B, Lamar D J, DeSchryver-Kecskemeti K. Hepatic adenoma within a spindle cell carcinoma in a woman with a long history of oral contraceptives.  J Surg Oncol. 1987;  35(3) 173-179
  • 89 Gyorffy E J, Bredfeldt J E, Black W C. Transformation of hepatic cell adenoma to hepatocellular carcinoma due to oral contraceptive use.  Ann Intern Med. 1989;  110(6) 489-490
  • 90 Korula J, Yellin A, Kanel G, Campofiori G, Nichols P. Hepatocellular carcinoma coexisting with hepatic adenoma. Incidental discovery after long-term oral contraceptive use.  West J Med. 1991;  155(4) 416-418
  • 91 Tao L C. Oral contraceptive-associated liver cell adenoma and hepatocellular carcinoma. Cytomorphology and mechanism of malignant transformation.  Cancer. 1991;  68(2) 341-347
  • 92 Bioulac-Sage P, Laumonier H, Couchy G et al.. Hepatocellular adenoma management and phenotypic classification: The Bordeaux experience.  Hepatology. 2009;  50 481-489
  • 93 Hsu I C, Metcalf R A, Sun T, Welsh J A, Wang N J, Harris C C. Mutational hotspot in the p53 gene in human hepatocellular carcinomas.  Nature. 1991;  350(6317) 427-428
  • 94 Sun C A, Wang L Y, Chen C J et al.. Genetic polymorphisms of glutathione S-transferases M1 and T1 associated with susceptibility to aflatoxin-related hepatocarcinogenesis among chronic hepatitis B carriers: a nested case-control study in Taiwan.  Carcinogenesis. 2001;  22(8) 1289-1294
  • 95 Bluteau O, Beaudoin J-C, Pasturaud P et al.. Specific association between alcohol intake, high grade of differentiation and 4q34-q35 deletions in hepatocellular carcinomas identified by high resolution allelotyping.  Oncogene. 2002;  21(8) 1225-1232
  • 96 Hoshida Y, Nijman S M, Kobayashi M et al.. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma.  Cancer Res. 2009;  69(18) 7385-7392
  • 97 Chen X, Cheung S T, So S et al.. Gene expression patterns in human liver cancers.  Mol Biol Cell. 2002;  13(6) 1929-1939
  • 98 Breuhahn K, Vreden S, Haddad R et al.. Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor II overexpression.  Cancer Res. 2004;  64(17) 6058-6064
  • 99 Kaposi-Novak P, Lee J S, Gòmez-Quiroz L, Coulouarn C, Factor V M, Thorgeirsson S S. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype.  J Clin Invest. 2006;  116(6) 1582-1595
  • 100 Coulouarn C, Factor V M, Thorgeirsson S S. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer.  Hepatology. 2008;  47(6) 2059-2067
  • 101 Yamashita T, Forgues M, Wang W et al.. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma.  Cancer Res. 2008;  68(5) 1451-1461
  • 102 Hoshida Y, Villanueva A, Kobayashi M et al.. Gene expression in fixed tissues and outcome in hepatocellular carcinoma.  N Engl J Med. 2008;  359(19) 1995-2004
  • 103 Cullen B R. Transcription and processing of human microRNA precursors.  Mol Cell. 2004;  16(6) 861-865
  • 104 Murakami Y, Yasuda T, Saigo K et al.. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues.  Oncogene. 2006;  25(17) 2537-2545
  • 105 Kutay H, Bai S, Datta J et al.. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas.  J Cell Biochem. 2006;  99(3) 671-678
  • 106 Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob S T, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.  Gastroenterology. 2007;  133(2) 647-658
  • 107 Gramantieri L, Ferracin M, Fornari F et al.. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma.  Cancer Res. 2007;  67(13) 6092-6099
  • 108 Huang Y S, Dai Y, Yu X F et al.. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis.  J Gastroenterol Hepatol. 2008;  23(1) 87-94
  • 109 Jiang J, Gusev Y, Aderca I et al.. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival.  Clin Cancer Res. 2008;  14(2) 419-427
  • 110 Varnholt H, Drebber U, Schulze F et al.. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma.  Hepatology. 2008;  47(4) 1223-1232
  • 111 Ladeiro Y, Couchy G, Balabaud C et al.. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations.  Hepatology. 2008;  47(6) 1955-1963
  • 112 Connolly E, Melegari M, Landgraf P et al.. Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype.  Am J Pathol. 2008;  173(3) 856-864
  • 113 Budhu A, Jia H L, Forgues M et al.. Identification of metastasis-related microRNAs in hepatocellular carcinoma.  Hepatology. 2008;  47(3) 897-907
  • 114 Ji J, Shi J, Budhu A et al.. MicroRNA expression, survival, and response to interferon in liver cancer.  N Engl J Med. 2009;  361(15) 1437-1447
  • 115 Ji J, Yamashita T, Budhu A et al.. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells.  Hepatology. 2009;  50(2) 472-480
  • 116 Ura S, Honda M, Yamashita T et al.. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma.  Hepatology. 2009;  49(4) 1098-1112
  • 117 Huang X H, Wang Q, Chen J S et al.. Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated.  Hepatol Res. 2009;  39(8) 786-794
  • 118 Su H, Yang J R, Xu T et al.. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity.  Cancer Res. 2009;  69(3) 1135-1142
  • 119 Li S, Fu H, Wang Y et al.. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma.  Hepatology. 2009;  49(4) 1194-1202
  • 120 Coulouarn C, Factor V M, Andersen J B, Durkin M E, Thorgeirsson S S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties.  Oncogene. 2009;  28(40) 3526-3536

Jessica Zucman-RossiM.D. Ph.D. 

Inserm U674, 27 rue Juliette Dodu

75010 Paris, France