Zusammenfassung
Die Immunpathologie der Multiplen Sklerose (MS) ist bis heute nicht vollständig verstanden.
Im Mittelpunkt der vorliegenden Arbeit stehen die B-Lymphozyten, die als Produzenten
von Autoantikörpern und durch die Fähigkeit zur Präsentation von Antigenen eine Schlüsselstellung
einnehmen können, jedoch bislang in ihrer Bedeutung für die MS unterschätzt wurden.
Auch wird die Bildung von ektopen B-Zell-Follikeln im ZNS und deren mögliche Korrelation
mit dem Krankheitsverlauf und Schweregrad diskutiert. Nicht zuletzt sollen regulatorische
Aspekte einer B-Zell-abhängigen Pathologie erwähnt werden. Ein umfassendes Verständnis
der komplexen Immunprozesse der MS kann Therapien hervorbringen, die spezifisch in
die Pathogenese eingreifen. Ansatzpunkte einer B-Zell-orientierten Therapie werden
im Folgenden erörtert. Insgesamt soll dieser Übersichtsartikel dazu anstoßen, bestehende
Paradigmen der Erkrankung zu überdenken und die Rolle der B-Lymphozyten bei der MS
zu würdigen.
Abstract
In spite of keen clinical and neuroscientific interest, the aetiology and immunopathology
of multiple sclerosis (MS) remain to be elucidated. The present work seeks to give
insight into the important, but thus far underestimated contribution of B cells to
the disease. Emphasis will be placed on the role of B cells as producers of autoantibodies
and as antigen presenting cells. In addition, the development of ectopic B cell follicles
in the CNS and their potential correlation with the course of the disease and MS severity
will be discussed. Finally, regulatory functions of a B cell-dependent immunopathology
should be mentioned. A better understanding of the complex pathomechanisms of MS will
allow for therapeutic options that are causative. Potential targets of a B cell-oriented
therapy will be delineated in the following review. We hereby aim at triggering a
critical re-evaluation of traditional paradigms assigned to MS, appreciating the importance
of B cells in the disease.
Schlüsselwörter
Antikörper - Autoimmunität - B-Lymphozyten - EAE - MS
Keywords
antibodies - autoimmunity - B cells - EAE - MS
Literatur
1
Batoulis H, Addicks K, Kuerten S.
Emerging concepts in autoimmune encephalomyelitis beyond the CD 4 /T(H)1 paradigm.
Ann Anat.
2010;
192
179-193
2
Lassmann H, Ransohoff R M.
The CD 4-Th1 model for multiple sclerosis: a critical re-appraisal.
Trends Immunol.
2004;
25
132-137
3
Awad A, Hemmer B, Hartung H P et al.
Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis.
J Neuroimmunol.
2010;
219
1-7
4
Luque F A, Jaffe S L.
Cerebrospinal fluid analysis in multiple sclerosis.
Int Rev Neurobiol.
2007;
79
341-56
5
Sospedra M, Martin R.
Immunology of multiple sclerosis.
Annu Rev Immunol.
2005;
23
683-747
6
Franciotta D, Salvetti M, Lolli F et al.
B cells and multiple sclerosis.
Lancet Neurol.
2008;
7
852-858
7
Bielekova B, Becker B.
Monoclonal antibodies in MS – Mechanisms of action.
Neurology.
2010;
74 (Suppl 1)
S31-S40
8
Owens G P, Bennett J L, Lassmann H et al.
Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal
fluid.
Ann Neurol.
2009;
65
639-649
9
Reindl M, Linington C, Brehm U et al.
Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein
in multiple sclerosis and other neurological diseases: a comparative study.
Brain.
1999;
122
2047-2056
10
Reindl M, Khalil M, Berger T.
Antibodies as biological markers for pathophysiological processes in MS.
J Neuroimmunol.
2006;
180
50-62
11
Büdingen H C, Harrer M D, Kuenzle von S et al.
Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific
antibodies.
Eur J Immunol.
2008;
38
2014-2023
12
Büdingen H C, Gulati von M, Kuenzle S et al.
Clonally expanded plasma cells in the cerebrospinal fluid of patients with central
nervous system autoimmune demyelination produce „oligoclonal bands”.
J Neuroimmunol.
2010;
218
134-139
13
Magliozzi R, Howell O, Vora A et al.
Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with
early onset of disease and severe cortical pathology.
Brain.
2007;
130
1089-1104
14
Keegan M, König F, McClelland R et al.
Relation between humoral pathological changes in multiple sclerosis and response to
therapeutic plasma exchange.
Lancet.
2005;
366
579-582
15
Hauser S L, Waubant E, Arnold D L et al.
B-cell depletion with rituximab in relapsing-remitting multiple sclerosis.
N Engl J Med.
2008;
358
676-688
16
Schröder A, Ellrichmann G, Chehab G et al.
Einsatz von Rituximab in der Behandlung neuroimmunologischer Erkrankungen.
Nervenarzt.
2009;
80
155-165
17
Buttmann M.
Treating multiple sclerosis with monoclonal antibodies: a 2010 update.
Expert Rev Neurother.
2010;
10
791-809
18
Rivers T M, Schwentker F F.
Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys.
J Exp Med.
1935;
61
689-702
19
Kabat E A, Moore D H, Landow H.
An electrophoretic study of the protein components in cerebrospinal fluid and the
relationship to the serum proteins.
J Clin Invest.
1942;
21
571-577
20
Link H, Baig S, Jiang Y P et al.
B cells and antibodies in MS.
Res Immunol.
1989;
140
219-226
21
Bernard C C, Rosbo N K.
Immunopathological recognition of autoantigens in multiple sclerosis.
Acta Neurol.
1991;
13
171-178
22
Menon de K, Piddlesden S J, Bernard C C.
Demyelinating antibodies to myelin oligodendrocyte glycoprotein and galactocerebroside
induce degradation of myelin basic protein in isolated human myelin.
J Neurochem.
1997;
69
214-222
23
Van der Goes A, Kortekaas M, Hoekstra K et al.
The role of anti-myelin (auto)-antibodies in the phagocytosis of myelin by macrophages.
J Neuroimmunol.
1999;
101
61-67
24
Ponomarenko N A, Durova O M, Vorobiev I I et al.
Autoantibodies to myelin basic protein catalyze site-specific degradation of their
antigen.
Proc Natl Acad Sci U S A.
2006;
103
281-286
25
Karthigasan J, Garvey J S, Ramamurthy G V et al.
Immunolocalization of 17 and 21.5 kDa MBP isoforms in compact myelin and radial component.
J Neurocytol.
1996;
25
1-7
26
Wucherpfennig K W.
Autoimmunity in the central nervous system: mechanisms of antigen presentation and
recognition.
Clin Immunol Immunopathol.
1994;
72
293-306
27
Yamamoto Y, Yoshikawa H, Nagano S et al.
Myelin-associated oligodendrocytic basic protein is essential for normal arrangement
of the radial component in central nervous system myelin.
Eur J Neurosci.
1998;
11
847-855
28
Lehmann P V, Forsthuber T, Miller A et al.
Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen.
Nature.
1992;
358
155-157
29
Popot J L, Pham Dinh D, Dautigny A.
Major Myelin proteolipid: the 4-alpha-helix topology.
J Membr Biol.
1991;
120
233-246
30
Schliess F, Stoffel W.
Evolution of the myelin integral membrane proteins of the central nervous system.
Biol Chem Hoppe Seyler.
1991;
372
865-874
31
Tumani H, Hartung H P, Hemmer B et al.
Cerebrospinal fluid biomarkers in multiple sclerosis.
Neurobiol Dis.
2009;
35
117-127
32
Ehling R, Lutterotti A, Wanschitz J et al.
Increased frequencies of serum antibodies to neurofilament light in patients with
primary chronic progressive multiple sclerosis.
Mult Scler.
2004;
10
601-606
33
Silber E, Semra Y K, Gregson N A et al.
Patients with progressive multiple sclerosis have elevated antibodies to neurofilament
subunit.
Neurology.
2002;
58
1372-1381
34
Sadatipour B T, Greer J M, Pender M P.
Increased circulating antiganglioside antibodies in primary and secondary progressive
multiple sclerosis.
Ann Neurol.
1998;
44
980-983
35
Banki K, Colombo E, Sia F et al.
Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple
sclerosis.
J Exp Med.
1994;
180
1649-1663
36
Mathey E K, Derfuss T, Storch M K et al.
Neurofascin as novel target for antibody mediated axonal injury.
J Exp Med.
2007;
204
2363-2372
37
Menge T, Lalive P H, Budingen H C et al.
Antibody responses against galactocerebroside are potential stage-specific biomarkers
in multiple sclerosis.
J Allergy Clin Immunol.
2005;
116
453-459
38
Villar L M, Sadaba M C, Roldan von E et al.
Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive
disease course in MS.
J Clin Invest.
2005;
115
187-194
39
Silber E, Semra Y K, Gregson N A et al.
Patients with progressive multiple sclerosis have elevated antibodies to neurofilament
subunit.
Neurology.
2002;
58
1372-1381
40
Eikelenboom M J, Petzold A, Lazeron R H et al.
Multiple sclerosis: Neurofilament light chain antibodies are correlated to cerebral
atrophy.
Neurology.
2003;
60
219-223
41
Sidén A.
Isoelectric focusing and crossed immunoelectrofocusing of CSF immunoglobulins in MS.
J Neurol.
1979;
221
39-51
42
Link H, Huang Y M.
Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology
and clinical usefulness.
J Neuroimmunol.
2007;
180
17-28
43
Vaheri A, Keski-Oja J, Salonen E M et al.
Cerebrospinal fluid IgG bands and virus-specific IgG, IgM, and IgA antibodies in herpes
simplex virus encephalitis.
J Neuroimmunol.
1982;
3
247-261
44
Stanek G.
Laboratory diagnosis and seroepidemiology of Lyme borreliosis.
Infection.
1991;
19
263-267
45
Ceroni M, Camana C, Franciotta D M et al.
Specific activation of B-cell clones within the central nervous system in course of
herpes simplex encephalitis.
Boll Soc Ital Biol Sper.
1990;
66
1223-1230
46
Shen X, Tan Y.
Detection of oligoclonal immunoglobulins in the cerebrospinal fluid by immunofixation
electrophoresis.
Clin Chem Lab Med.
2001;
39
1209-1210
47
Dornmair K, Meinl E, Hohlfeld R.
Novel approaches for identifying target antigens of autoreactive human B and T cells.
Semin Immunopathol.
2009;
31
467-477
48
Lucchinetti C, Brück W, Parisi J et al.
Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of
demyelination.
Ann Neurol.
2000;
47
707-717
49
Qin Y, Duquette P, Zhang Y et al.
Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal
fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis.
Lab Invest.
2003;
83
1081-1088
50
Rock K L, Benacerraf B, Abbas A K.
Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin
receptors.
J Exp Med.
1984;
160
1102-1113
51
Constant S L.
B lymphocytes as antigen-presenting cells for CD 4þ T cell priming in vivo.
J Immunol.
1999;
162
5695-5703
52
Greter M, Heppner F L, Lemos M P et al.
Dendritic cells permit immune invasion of the CNS in animal model of multiple sclerosis.
Nat Med.
2005;
11
328-334
53
Racke M.
The role of B cells in multiple sclerosis: rationale for B-cell-targeted therapies.
Curr Opin Neurol.
2008;
21 (Suppl 1)
S9-S18
54
Harp C T, Lovett-Racke A E, Racke M K et al.
Impact of myelin-specific antigen presenting B cells on T cell activation in multiple
sclerosis.
Clin Immunol.
2008;
128
382-391
55
Serafini B, Rosicarelli B, Magliozzi R et al.
Detection of ectopic B-cell follicles with germinal centers in meninges of patients
with secondary progressive multiple sclerosis.
Brain Pathol.
2004;
14
164-174
56
Aloisi F, Pujol-Borrell R.
Lymphoid neogenesis in chronic inflammatory diseases.
Nat Rev Immunol.
2006;
6
205-217
57
Kaiser C C, Shukla D K, Stebbins G T et al.
A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple
sclerosis.
J Neuroimmunol.
2009;
211
124-130
58
Serafini B, Severa M, Columba-Cabezas S et al.
Epstein-Barr virus latent i nfection and BAFF expression in B cells in the multiple
sclerosis brain: implications for viral persistence and intrathecal B-cell activation.
J Neuropathol Exp Neurol.
2010;
69
677-693
59
Bø L, Vedeler C A, Nyland H et al.
Intracortical multiple sclerosis lesions are not associated with increased lymphocyte
infiltration.
Mult Scler.
2003;
9
323-331
60
Willis S N, Stadelmann C, Rodig S J et al.
Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis
brain.
Brain.
2009;
132
3318-3328
61
Sargsyan S A, Shearer A J, Ritchie A M et al.
Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis.
Neurology.
2010;
74
1127-1135
62
Fillatreau S, Sweenie C H, McGeachy M J et al.
B cells regulate autoimmunity by provision of IL-10.
Nat Immunol.
2002;
3
944-950
63
Matsushita T, Yanaba K, Bouaziz J D et al.
Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease
progression.
J Clin Invest.
2008;
118
3420-3430
64
Warrington A E, Asakura K, Bieber A J et al.
Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in
a model of multiple sclerosis.
Proc Natl Acad Sci USA.
2000;
97
6820-6825
65
Gold R, Linington C, Lassmann H.
Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70
years of merits and culprits in experimental autoimmune encephalomyelitis research.
Brain.
2006;
129
1953-1971
66
Goverman J, Brabb T.
Rodent models of experimental allergic encephalomyelitis applied to the study of multiple
sclerosis.
Lab Anim Sci.
1996;
46
482-492
67
Kuerten S, Angelov D N.
Comparing the CNS morphology and immunobiology of different EAE models in C 57BL/
6 mice – a step towards understanding the complexity of multiple sclerosis.
Ann Anat.
2008;
190
1-15
68
Steinmann L, Zamvil S.
Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis.
Trends in Immunol.
2005;
26
565-571
69
Steinman L, Zamvil S S.
How to successfully apply animal studies in experimental allergic encephalomyelitis
to research on multiple sclerosis.
Ann Neurol.
2006;
60
12-21
70
Yip H C, Karulin A Y, Tary-Lehmann M et al.
Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines
the class of response.
J Immunol.
1999;
162
3942-3949
71
Sriram S, Steiner I.
Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis.
Ann Neurol.
2005;
58
939-945
72
Stefferl A, Storch M K, Linington C et al.
Disease progression in chronic relapsing experimental allergic encephalomyelitis is
associated with reduced inflammation-driven production of corticosterone.
Endocrinology.
2001;
142
3616-3612
73
Genain C P, Nguyen M H, Letvin N L et al.
Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate.
J Clin Invest.
1995;
96
2966-2974
74
't Hart B A, Massacesi L.
Clinical, pathological, and immunologic aspects of the multiple sclerosis model in
common marmosets (Callithrix jacchus).
J Neuropathol Exp Neurol.
2009;
68
341-355
75
Hjelmstrom P, Juedes A E, Fjell J et al.
B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination
after myelin oligodendrocyte glycoprotein sensitization.
J Immunol.
1998;
161
4480-4483
76
Oliver A R, Lyon G M, Ruddle N H.
Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune
encephalomyelitis by different mechanisms in C 57BL/ 6 mice.
J Immunol.
2003;
171
462-468
77
Kuerten S, Lichtenegger F S, Faas S et al.
MBP-PLP fusion protein-induced EAE in C 57BL/ 6 mice.
J Neuroimmunol.
2006;
177
99-111
78
Kuerten S, Javeri S, Tary-Lehmann M et al.
Fundamental differences in the CNS lesion development and composition in MP 4- and
MOG:35 – 55-induced EAE.
Clin Immunol.
2008;
129
256-267
79
Elliott E A, McFarland H I, Nye S H et al.
Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of
myelin basic protein and proteolipid protein.
J Clin Invest.
1996;
98
1602-1612
80
Pöllinger B, Krishnamoorthy G, Berer K et al.
Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T
cells recruit endogenous MOG-specific B cells.
J Exp Med.
2009;
206
1303-1316
81
Genc K, Dona D L, Reder A T.
Increased CD 80(+) B cells in active multiple sclerosis and reversal by interferon
beta-1b therapy.
J Clin Invest.
1997;
99
2664-2671
82
Kim H J, Ifergan I, Antel J P et al.
Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy
in patients with multiple sclerosis.
J Immunol.
2004;
172
7144-7153
83
Kala M, Rhodes S N, Piao W H et al.
B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis.
Exp Neurol.
2010;
221
136-145
84
Begum-Haque S, Sharma A, Christy M et al.
Increased expression of B-cell associated regulatory cytokines by glatiramer acetate
in mice with experimental autoimmune encephalomyelitis.
J Neuroimmunol.
2010;
219
47-53
85
Krumbholz M, Faber H, Steinmeyer F et al.
Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell
autoimmunity.
Brain.
2008;
131
1455-1463
86
Steinman L.
Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab.
Nat Rev Drug Discov.
2005;
4
510-518
87
Rudick R A, Sandrock A.
Natalizumab. alpha 4-integrin antagonist selective adhesion molecule inhibitors for
MS.
Expert Rev Neurother.
2004;
4
571-580
88
Krumbholz M, Meinl I, Kümpfel T et al.
Natalizumab disproportionately increases circulating pre-B and B cells in multiple
sclerosis.
Neurology.
2008;
71
1350-1354
89
Weissert R.
Progressive multifocal leukoencephalopathy.
J Neuroimmunol.
2010;
[Epub ahead of print]
90
Meinl E, Krumbholz M, Hohlfeld R.
B linage cells in the inflammatory central nervous system environment: migration,
maintenance, local antibody production and therapeutic modulation.
Ann Neurol.
2006;
59
880-892
91
Menge T, Büdingen H C, Dalakas M C et al.
B-Zell-gerichtete Multiple-Sklerose-Therapie: Aktueller Stand.
Nervenarzt.
2009;
80
190-198
92
Cross A H, Stark J L, Lauber J et al.
Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis
patients.
J Neuroimmunol.
2006;
180
63-70
93
Nückel H, Frey U H, Röth A et al.
Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic
lymphocytic leukemia by antibody-dependent cellular cytotoxicity.
Eur J Pharmacol.
2005;
514
217-224
94
Hawker K.
B-cell-targeted treatment for multiple sclerosis: mechanism of action and clinical
data.
Curr Opin Neurol.
2008;
21 (Suppl 1)
S19-S25
95
Monson N.
The natural history of B cells.
Curr Opin Neurol.
2008;
21 (Suppl 1)
S3-S8
96
Chan A, Weilbach F X, Toyka K V et al.
Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis
patients.
Clin Exp Immunol.
2005;
139
152-158
Dr. Stefanie Kuerten
Anatomie I, Universität zu Köln
Joseph-Stelzmann-Str. 9
50931 Köln
Email: stefanie.kuerten@uk-koeln.de