Sportverletz Sportschaden 2011; 25(1): 23-29
DOI: 10.1055/s-0029-1245902
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Gendoping – aktuelle Möglichkeiten, Risiken und Präventionskonzepte

Gene Doping – Current Possibilities, Risks and Means of PreventionN. Pleger1 , K. Vitzthum1 , N. Schöffel1 , D. Quarcoo1 , S. Uibel1 , D. A. Groneberg1
  • 1Institut für Arbeitsmedizin, Charité – Universitätsmedizin Berlin, Zentrum für Human- und Gesundheitswissenschaften, Freie Universität & Humboldt-Universität zu Berlin (Direktor: Prof. Dr. Dr. h. c. mult. David A. Groneberg)
Further Information

Publication History

Publication Date:
11 March 2011 (online)

Zusammenfassung

Mit dem Voranschreiten der Gentherapie wachsen die Ängste um den Missbrauch zu Dopingzwecken. Das durch die WADA definierte Gendoping grenzt sich streng von der Gentherapie ab. Man unterscheidet in vivo und ex vivo Methoden, um in verschiedene Phasen der Genexpression im Organismus Manipulationen durchführen zu können, als effizienteste werden virale Vektoren angesehen. Wichtigste Ansatzpunkte der Forschung sind IGF-1, PPARδ, MSTN und EPO, deren Potenzial teilweise in Tierversuchen zu signifikanten Leistungsverbesserungen führte. Mögliche Risiken für den menschlichen Anwender liegen in heftigen Immunreaktionen, Mutagenese und erhöhtem Krebsrisiko. Große Bemühungen werden in die Entwicklung von Nachweismethoden verwendet, aktuell gibt es jedoch noch keine praktikablen Kontrollmethoden oder dokumentierte Fälle von manipulierten Menschen. Eine bereits erfolgte Anwendung von Gendoping ist dennoch nicht auszuschließen und hochwahrscheinlich.

Abstract

With the advances in gene therapy fears of an abuse in sports arise. The WADA’s definition of the term strictly differentiates between gene doping and gene therapy. There are in vivo and ex vivo practices to manipulate the different phases of gene expression in the organism, with viral vectors being looked upon as the most efficient ones. IGF-1, PPARδ, MSTN and EPO play the most important roles in today’s scientific research. Their potential was proven in various animal studies, showing a significant improvement of performances. Potential risks for human users include severe immune reactions, mutagenesis, and raised risk for cancer. Big efforts are being put into the development of ways of detection, however until now there are neither practicable methods of control nor any reported cases of manipulated humans. Still, a usage of gene doping that has already taken place cannot be ruled out and is highly likely.

Literatur

  • 1 Arndt N, Singler A, Treutlein G et al. Sport ohne Doping.  Deutsche Sportjugend. 2004;  1. Auflage 5-92
  • 2 Higgins A J. From ancient Greece to modern Athens: 3000 years of doping in competition horses.  J vet Pharmacol Therap. 2006;  29 4-8
  • 3 Friedmann T, Rabin O, Frankel M S. Ethics: Gene Doping and Sport.  Science. 2010;  327 647-648
  • 4 Dunn W R, George M S, Churchill L et al. Ethics in sports medicine.  Am J Sports Med. 2007;  35 840-844
  • 5 Azzazy H ME, Mansour M MH, Christenson R H. Doping in the recombinant era: Strategies and counterstrategies.  Clin Biochem. 2005;  38 959-965
  • 6 Fraser A D. Doping control from a global and national perspective.  Ther Drug Monit. 2004;  26 171-174
  • 7 Haugen K K. The performance-enhancing drug game.  Journal of Sports Economics. 2004;  5 67
  • 8 Robert Koch Institut .Gesundheitsberichterstattung des Bundes. 2006 Heft 34
  • 9 Wells D J. Gene Doping: Possibilities and Practicalities.  Med Sport Sci. 2009;  54 166-175
  • 10 Wells D J. Gene doping: The hype and the reality.  Br J Pharmacol. 2008;  154 623-631
  • 11 Filipp F. Is science killing sport? Gene therapy and its possible abuse in doping.  EMBO Rep. 2007;  8 433-435
  • 12 Haisma H J, De Hon O. Gene doping.  Int J Sports Med. 2006;  27 257-266
  • 13 Sweeney H L. Gene doping.  Sci Am. 2004;  291 62-69
  • 14 Nationale Antidoping Agentur .Welt Anti Doping Code. 2004
  • 15 Gießing J, Hildenbrandt E. Bodybuilding, Körperbau und Muskelschau.  Sportwissenschaft. 2005;  35 135-151
  • 16 Ostrander E A, Huson H J, Ostrander G K. Genetics of athletic performance.  Annu Rev Genomics Hum Genet. 2009;  10 407-429
  • 17 Striegel H, Rossner D, Simon P et al. The World Anti-Doping Code 2003 – Consequences for Physicians Associated with Elite Athletes.  Int J Sports Med. 2005;  26 238-243
  • 18 Diel P, Friedel U. Gendoping: Techniken, potenzielle biologische Ziele und Möglichkeiten des Nachweises. Gutachten im Auftrag des Deutschen Bundestages Deutsche Sporthochschule Köln; 2007
  • 19 Bogdanovich S, Krag T OB, Barton E R et al. Functional improvement of dystrophic muscle by myostatin blockade.  Nature. 2002;  420 418-421
  • 20 Cossu G, Sampaolesi M. New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials.  Trends Mol Med. 2007;  13 520-526
  • 21 Engvall E, Wewer U M. The new frontier in muscular dystrophy research: booster genes.  FASEB J. 2003;  17 1579-1584
  • 22 Hargreaves M. Exercise and Insulin-Understanding the Molecular Interactions.  Exerc Sport Sci Rev. 2009;  37 156
  • 23 Barton-Davis E R, Shoturma D I, Musaro A et al. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function.  Proc Natl Acad Sci U S A. 1998;  95 15603-15607
  • 24 Azzazy H ME, Mansour M MH, Christenson R H. Gene doping: Of mice and men.  Clin Biochem. 2009;  42 435-441
  • 25 Vrij de J, Willemsen R A, Lindholm L et al. Adenovirus-Derived Vectors or Prostate Cancer Gene Therapy.  Hum Gene Ther. 2010;  21 795-805
  • 26 Naldini L. Medicine. A comeback for gene therapy.  Science. 2009;  326 805-806
  • 27 Gao G, Lebherz C, Weiner D J et al. Erythropoietin gene therapy leads to autoimmune anemia in macaques.  Blood. 2004;  103 3300-3302
  • 28 Rheinberger H J. Recent science and its exploration: the case of molecular biology.  Stud Hist Philos Biol Biomed Sci. 2009;  40 6-12
  • 29 Hilvoorde van I, Vos R, Wert de G. Flopping, Klapping and Gene Doping: Dichotomies Between’Natural’and’Artificial’in Elite Sport.  Social Studies of Science. 2007;  37 173-200
  • 30 Gardlík R, Pálffy R, Hodosy J et al. Vectors and delivery systems in gene therapy.  Med Sci Monit. 2005;  11 110-121
  • 31 Baoutina A, Alexander I E, Rasko J EJ et al. Potential use of gene transfer in athletic performance enhancement.  Mol Ther. 2007;  15 1751-1766
  • 32 Gregorevic P, Blankinship M J, Allen J M et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors.  Nat Med. 2004;  10 828-834
  • 33 Herweijer H, Wolff J A. Progress and prospects: naked DNA gene transfer and therapy.  Gene Ther. 2003;  10 453-458
  • 34 Lombardo A, Genovese P, Beausejour C M et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery.  Nat Biotechnol. 2007;  25 1298-1306
  • 35 Hacein-Bey-Abina S, Le Deist F, Carlier F et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy.  N Engl J Med. 2002;  346 1185-1193
  • 36 Cavazzana-Calvo M, Hacein-Bey S, Basile G S et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.  Science. 2000;  288 669-672
  • 37 Wolff J A, Malone R W, Williams P et al. Direct gene transfer into mouse muscle in vivo.  Science. 1990;  247 1465-1468
  • 38 Lu Q L, Bou-Gharios G, Partridge T A. Non-viral gene delivery in skeletal muscle: a protein factory.  Gene Ther. 2003;  10 131-142
  • 39 Diamanti-Kandarakis E, Konstantinopoulos P A, Papailiou J et al. Erythropoietin abuse and erythropoietin gene doping: detection strategies in the genomic era.  Sports Med. 2005;  35 831-840
  • 40 Baar K. Training for endurance and strength: lessons from cell signaling.  Med Sci Sports Exerc. 2006;  38 1939-1944
  • 41 Coleman M E, DeMayo F, Yin K C et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice.  J Biol Chem. 1995;  270 12109-12116
  • 42 Manfredsson F, Okun M S, Mandel R J. Gene Therapy for Neurological Disorders: Challenges and Future Prospects for the Use of Growth Factors for the Treatment of Parkinsons Disease.  Curr Gene Ther. 2009;  9 375-388
  • 43 Musarò A, McCullagh K, Paul A et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle.  Nat Genet. 2001;  27 195-200
  • 44 Grimberg A, Cohen P. Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis.  J Cell Physiol. 2000;  183 1-9
  • 45 Barton E R. Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle.  J Appl Physiol. 2006;  100 1778-1784
  • 46 Lee S, Barton E R, Sweeney H L et al. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats.  J Appl Physiol. 2004;  96 1097-1104
  • 47 Lin J, Wu H, Tarr P T et al. Transcriptional co-activator PGC-1 drives the formation of slow-twitch muscle fibres.  Nature. 2002;  418 797-801
  • 48 Lunde I G, Ekmark M, Rana Z A et al. PPAR expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer.  J Physiol. 2007;  582 1277-1287
  • 49 Harber M, Trappe S. Single muscle fiber contractile properties of young competitive distance runners.  J Appl Physiol. 2008;  105 629-636
  • 50 Grimaldi P A. Roles of PPARdelta in the control of muscle development and metabolism.  Biochem Soc Trans. 2003;  31 1130-1132
  • 51 Takahashi S, Tanaka T, Kodama T et al. Peroxisome proliferator-activated receptor [delta] (PPAR [delta]), a novel target site for drug discovery in metabolic syndrome.  Pharmacol Res. 2006;  53 501-507
  • 52 Müller-Platz C, Boos C, Müller R K. Doping beim Freizeit-und Breitensport. Robert Koch-Institut; 2006
  • 53 Figura L. Doping: Zwischen Freiheitsrecht und notwendigem Verbot. Aachen: Meyer & Meyer Verlag; 2009
  • 54 Sebestyén M G, Hegge J O, Noble M A et al. Progress toward a nonviral gene therapy protocol for the treatment of anemia.  Hum Gene Ther. 2007;  18 269-285
  • 55 Qiao C, Li J, Zheng H et al. Hydrodynamic limb vein injection of AAV8 canine myostatin propeptide gene in normal dogs enhances muscle growth.  Hum Gene Ther. 2009;  20 1-10
  • 56 Schuelke M, Wagner K R, Stolz L E et al. Myostatin mutation associated with gross muscle hypertrophy in a child.  N Engl J Med. 2004;  350 2682-2688
  • 57 Girgenrath S, Song K, Whittemore L A. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow-and fast-type skeletal muscle.  Muscle Nerve. 2005;  31 34-40
  • 58 Raper S E, Chirmule N, Lee F S et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer.  Mol Genet Metab. 2003;  80 148-158
  • 59 Chenuaud P, Larcher T, Rabinowitz J E et al. Autoimmune anemia in macaques following erythropoietin gene therapy.  Blood. 2004;  103 3303-3304
  • 60 Wang Y X, Zhang C L, Yu R T et al. Regulation of muscle fiber type and running endurance by PPARdelta.  PLoS Biol. 2004;  2 e294
  • 61 Perry J K, Emerald B S, Mertani H C et al. The oncogenic potential of growth hormone.  Growth Horm IGF Res. 2006;  16 277-289
  • 62 Baoutina A, Alexander I E, Rasko J EJ et al. Developing strategies for detection of gene doping.  J Gene Med. 2008;  10 3-20
  • 63 Beiter T, Zimmermann M, Fragasso A et al. Establishing a novel single-copy primerinternal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping.  Exerc Immunol Rev. 2008;  14 73-85
  • 64 Schneider A J, Friedmann T. Gene doping in sports: the science and ethics of genetically modified athletes.  Adv Genet. 2006;  51 1-110

Mag. phil. Karin Vitzthum

Charité Berlin – Institut für Arbeitsmedizin, Abt. Sportmedizin und Psychologie

Thielallee 69 – 73

14195 Berlin

Email: karin.vitzthum@charite.de