Zusammenfassung
Zielsetzung: Discrete-Choice-Experimente (DCE) sind eine Methode zur Messung der Zahlungsbereitschaft
im Kontext von Kosten-Nutzen-Analysen. Verglichen mit herkömmlichen Verfahren bieten
DCE vielseitige Ansatzpunkte zur Messung von Präferenzurteilen. Ziel dieser Arbeit
war es, die praktischen Anwendungsmöglichkeiten von DCE im Rahmen der Zahlungsbereitschaftsmessung
für medizinische Technologien zu untersuchen. Methodik: Literaturreview basierend auf computergestützter Literaturrecherche in medizinischen
und wirtschaftswissenschaftlichen Datenbanken (PubMed, EconLit) und bibliografische
Suche in Literaturverzeichnissen im Veröffentlichungszeitraum von 01 / 1998 – 05 / 2010.
Ergebnisse: Die Nutzenmessung mittels DCE bietet im Gegensatz zu anderen Methoden zwei Vorteile:
Zum einen ist das Experiment für die Probanden leicht durchzuführen und zum anderen
basieren der Zahlungsbereitschaftsansatz und DCE auf fundierten theoretischen Grundlagen.
Aus der Literatur wurden die Validität, Reliabilität, Akzeptanz bei den befragten
Personen, Praktikabilität und Wirtschaftlichkeit als Beurteilungskriterien für DCE
evaluiert. Auf methodischer Ebene erweisen sich diese als ein Nutzenmaß von hoher
Validität und Reliabilität. Besonders die Ergebnisse im Bereich der internen Konsistenz
und der theoretischen Validität sind sehr gut. DCE können hilfreiche Anhaltspunkte
liefern, insbesondere bei der Identifizierung von nutzenstiftenden Eigenschaften medizinischer
Serviceleistungen, bei der Eliminierung von Leistungsbestandteilen, für die keine
Zahlungsbereitschaft besteht, und bei der Konzeption von Leistungsangeboten für spezifische
Patientengruppen. Die besten Ergebnisse lassen sich erzielen, wenn die befragten Personen
mit der Entscheidungssituation vertraut sind. Schwierigkeiten in diesem Zusammenhang
bestehen insbesondere in öffentlich finanzierten Gesundheitssystemen, in denen die
Preissensitivität der Probanden nicht hinreichend genug ausgeprägt ist. Schlussfolgerung: DCE sind ein leistungsstarkes Verfahren, mit dem neben gesundheitsbezogenen Folgen
auch Prozessattribute bewertet und Trade-Offs der Probanden zwischen einzelnen Produktattributen
beobachtet werden können. Durch die Nachbildung von alltagstypischen Entscheidungssituationen
können insbesondere interventionsspezifische Auswirkungen ermittelt werden. Dennoch
erscheint es angebracht, zahlreiche Aspekte einer weiteren empirischen Überprüfung
zu unterziehen. Hinsichtlich der Zahlungsbereitschaftsmessung sind Fragen bezüglich
des optimalen Designs, psychologischer Aspekte und kognitiver Probleme der Entscheidungsfindung
zu berücksichtigen.
Abstract
Aim: Discrete choice experiments (DCE) are a method to assess willingness-to-pay (WTP)
within the framework of cost-benefit analysis. Compared to traditional tools, DCE
offer a broad application spectrum for the measurement of preferences. The objective
of this paper was to evaluate the application of DCE in the measurement of willingness-to-pay
for medical interventions. Method: A literature review was conducted in healthcare and economic databases (PubMed, EconLit),
as well as manual search and citation-tracking in bibliographies for papers and books
published in the period 01 / 1998 – 05 / 2010. Results: Compared to conventional methods, utility measurement using DCE provides two advantages.
First, the experiment is less cognitive demanding for respondents. Second, willingness-to-pay
and DCE are based on a valid theoretical basis. From the literature, validity, reliability,
acceptance by respondents, practicability, and efficiency were evaluated as criteria
for assessing DCE. These criteria proved to be of high methodological validity and
reliability. Particularly, the results concerning internal consistency and theoretical
validity are very encouraging. DCE provide an informative basis for identifying medical
service features which create a higher benefit for patients, eliminating services
for which no willingness-to-pay exists, and the conception of medical services offered
to specific patient groups. Optimized results may be achieved if the respondents are
familiar with the framing of the decision situation. Particularly in healthcare systems
where respondents exhibit inadequate price sensitivity, this may be a difficulty.
Conclusion: DCE are a versatile tool for WTP measurement in health economics, which enables researchers
both to evaluate process attributes and to observe individual trade-offs between service
attributes. By mimicking everyday decision-making situations the method is especially
suitable for the evaluation of intervention-specific effects. However, numerous criteria
require empirical examination. Focusing on WTP measurement, aside from experimental
design aspects, particularly psychological aspects and cognitive problems of decision
heuristics should be taken into consideration.
Schlüsselwörter
Präferenzmessung - Discrete-Choice-Experiment - Zahlungsbereitschaft
Key words
preferences - discrete choice experiment - willingness-to-pay
Literatur
1
Cookson R.
Willingness to pay methods in health care: a sceptical view.
Health Econ.
2003;
12
891-894
2 Ryan M, Gerard K, Amaya-Amaya M (Hrsg.).. Using Discrete Choice Experiments to Value
Health and Health Care. Springer Netherlands. Dordrecht; 2008
3
Pol van der M, Shiell A, Au F et al.
Eliciting individual preferences for health care: a case study of perinatal care.
Health Expect.
2010;
13
4-12
4
McIntosh E.
Using discrete choice experiments within a cost-benefit analysis framework: some considerations.
Pharmacoeconomics.
2006;
24
855-868
5
Ryan M, Bate A, Eastmond C J et al.
Use of discrete choice experiments to elicit preferences.
Qual Health Care.
2001;
10 Suppl 1
i55-60
6
Ratcliffe J.
The use of conjoint analysis to elicit willingness-to-pay values. Proceed with caution?.
Int J Technol Assess Health Care.
2000;
16
270-275
7
Slothuus Skjoldborg U, Gyrd-Hansen D.
Conjoint analysis. The cost variable: an Achilles’ heel?.
Health Econ.
2003;
12
479-491
8
Lancsar E, Louviere J.
Conducting discrete choice experiments to inform healthcare decision making: a user’s
guide.
Pharmacoeconomics.
2008;
26
661-677
9
Carlsson F, Martinsson P.
Design techniques for stated preference methods in health economics.
Health Econ.
2003;
12
281-294
10
Ryan M, Scott D A, Reeves C et al.
Eliciting public preferences for healthcare: a systematic review of techniques.
Health Technol Assess.
2001;
5
1-186
11
Ryan M.
A role for conjoint analysis in technology assessment in health care?.
Int J Technol Assess Health Care.
1999;
15
443-457
12 Donaldson C, Shackley P. Willingness to Pay for Health Care. In Scott A, Maynard A,
Elliott R, (Hrsg.) Advances in Health Economics.. Chichester: Wiley & Sons; 2003
13 Garrod G, Willis K. Economic Valuation of the Environment, Methods and Case Studies. Edward
Elgar Publishing Limited. Cheltenham UK; 1999
14
Luce R D, Tukey J W.
Simultaneous conjoint measurement: A new type of fundamental measurement.
Journal of Mathematical Psychology.
1964;
1
1-27
15
Louviere J J, Woodworth G.
Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach
Based on Aggregate Data.
Journal of Marketing Research (JMR).
1983;
20
350-367
16 Lancaster K. Consumer Demand. A New Approach. Columbia University Press. New York;
1971
17 Gravelle H, Rees R. Microeconomics. Longman. New York; 1992 2nd ed
18 McFadden D. Conditional logit analysis of qualitative choice behaviour. In Zarembka P,
(Hrsg.) Frontiers in Econometrics.. New York: Academic Press; 1974: 105-142
19
Lloyd A J.
Threats to the estimation of benefit: are preference elicitation methods accurate?.
Health Econ.
2003;
12
393-402
20
Ryan M, Netten A, Skatun D et al.
Using discrete choice experiments to estimate a preference-based measure of outcome
– an application to social care for older people.
J Health Econ.
2006;
25
927-944
21
Ryan M, Hughes J.
Using conjoint analysis to assess women’s preferences for miscarriage management.
Health Econ.
1997;
6
261-273
22
Emery D R, Barron F H.
Axiomatic and numerical conjoint measurement: an evaluation of diagnostic efficacy.
Psychometrika.
1979;
44
195-210
23
Ryan M.
A comparison of stated preference methods for estimating monetary values.
Health Econ.
2004;
13
291-296
24 McFadden D. Econometric Models of Probabilistic Choice. In Manski C, McFadden D,
(Hrsg.) Structural Analysis of Discrete Data with Econometric Applications.. Cambridge:
MIT Press; 1981
25
Train K E.
Recreation Demand Models with Taste Differences Over People.
Land Economics.
1998;
74
230-239
26
Hausman J A, Wise D A.
A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing
Interdependence and Heterogeneous Preferences.
Econometrica.
1978;
46
403-426
27
McIntosh E, Ryan M.
Using discrete choice experiments to derive welfare estimates for the provision of
elective surgery: Implications of discontinuous preferences.
Journal of Economic Psychology.
2002;
23
367
28
Scott A.
Identifying and analysing dominant preferences in discrete choice experiments: An
application in health care.
Journal of Economic Psychology.
2002;
23
383
29 Train K E, Sonnier G. Mixed logit with bounded distributions of correlated partworths.
In Alberini A, Scarpa R, (Hrsg.) Application of Simulation Methods in Environmental
und Resource Economics.. Dordrecht: Springer; 2005: 117-134
30
Hall J, Fiebig D G, King M T et al.
What influences participation in genetic carrier testing? Results from a discrete
choice experiment.
J Health Econ.
2006;
25
520-537
31
Eberth B, Watson V, Ryan M et al.
Does one size fit all? Investigating heterogeneity in men’s preferences for benign
prostatic hyperplasia treatment using mixed logit analysis.
Med Decis Making.
2009;
29
707-715
32
Lancsar E, Savage E.
Deriving welfare measures from discrete choice experiments: inconsistency between
current methods and random utility and welfare theory.
Health Econ.
2004;
13
901-907
33
Kimman M L, Dellaert B G, Boersma L J et al.
Follow-up after treatment for breast cancer: one strategy fits all? An investigation
of patient preferences using a discrete choice experiment.
Acta Oncol.
2010;
49
328-337
34 Ryan M, Gerard K. Using Discrete Choice Experiments in Health Economics: Moving
Forward. In Scott A, Maynard A, Elliott R, (Hrsg.) Advances in Health Economics..
Chichester: Wiley & Sons; 2003
35
Pitchforth E, Watson V, Tucker J et al.
Models of intrapartum care and women’s trade-offs in remote and rural Scotland: a
mixed-methods study.
BJOG.
2008;
115
560-569
36
Salkeld G, Ryan M, Short L.
The veil of experience: do consumers prefer what they know best?.
Health Econ.
2000;
9
267-270
37
Thaler R H.
Toward a positive theory of consumer choice.
Journal of Economic Behavior and Organization.
1980;
1
39-60
38
Grutters J P, Kessels A G, Dirksen C D et al.
Willingness to Accept versus Willingness to Pay in a Discrete Choice Experiment.
Value Health.
2008;
11
1110-1119
39
Ryan M, Major K, Skatun D.
Using discrete choice experiments to go beyond clinical outcomes when evaluating clinical
practice.
J Eval Clin Pract.
2005;
11
328-338
40 Telser H. Nutzenmessung im Gesundheitswesen. Die Methode der Discrete-Choice-Experimente. Verlag
Dr. Kovač. Hamburg; 2002
41
Johnson F R, Manjunath R, Mansfield C A et al.
High-risk individuals’ willingness to pay for diabetes risk-reduction programs.
Diabetes Care.
2006;
29
1351-1356
42
Taylor S J, Armour C L.
Acceptability of willingness to pay techniques to consumers.
Health Expect.
2002;
5
341-356
43
Roux L, Ubach C, Donaldson C et al.
Valuing the benefits of weight loss programs: an application of the discrete choice
experiment.
Obes Res.
2004;
12
1342-1351
44
Aristides M, Weston A R, FitzGerald P et al.
Patient preference and willingness-to-pay for Humalog Mix25 relative to Humulin 30 / 70:
a multicountry application of a discrete choice experiment.
Value Health.
2004;
7
442-454
45 Louviere J J, Hensher D A, Swait J D. Stated Choice Methods. Analysis and Application. Cambridge
University Press. Cambridge; 2000
46
Mangham L J, Hanson K, McPake B.
How to do (or not to do) … Designing a discrete choice experiment for application
in a low-income country.
Health Policy Plan.
2009;
24
151-158
47
Farrar S, Ryan M.
Response-ordering effects: a methodological issue in conjoint analysis.
Health Econ.
1999;
8
75-79
48
Kjaer T, Bech M, Gyrd-Hansen D et al.
Ordering effect and price sensitivity in discrete choice experiments: need we worry?.
Health Econ.
2006;
15
1217-1228
49
Tversky A, Kahneman D.
Judgement under uncertainty: heuristics and biases.
Science.
1974;
185
1124-1130
50
Morkbak M R, Christensen T, Gyrd-Hansen D.
Choke Price Bias in Choice Experiments.
Environ Resource Econ.
2010;
45
537-551
51
Ratcliffe J, Longworth L.
Investigating the structural reliability of a discrete choice experiment within health
technology assessment.
Int J Technol Assess Health Care.
2002;
18
139-144
52
Cheraghi-Sohi S, Bower P, Mead N et al.
Making sense of patient priorities: applying discrete choice methods in primary care
using ‘think aloud’ technique.
Fam Pract.
2007;
24
276-282
53
Ryan M, Watson V, Entwistle V.
Rationalising the ‘irrational’: a think aloud study of discrete choice experiment
responses.
Health Econ.
2009;
18
321-336
54
Bryan S, Buxton M, Sheldon R et al.
Magnetic resonance imaging for the investigation of knee injuries: an investigation
of preferences.
Health Econ.
1998;
7
595-603
55
Ryan M, Skatun D.
Modelling non-demanders in choice experiments.
Health Econ.
2004;
13
397-402
56 Bateman I J, Carson R T, Day B et al. Economic evaluation with stated preference
techniques, a manual. Edward Elgar Publishing Ltd. Cheltenham; 2002
57
Miguel F S, Ryan M, Amaya-Amaya M.
‘Irrational’ stated preferences: a quantitative and qualitative investigation.
Health Econ.
2005;
14
307-322
58
Haaijer R, Kamakura W, Wedel M.
The No-Choice Alternative in Conjoint Choice Experiments.
International Journal of Market Research.
2001;
43
93-106
59
Herbild L, Bech M, Gyrd-Hansen D.
Estimating the Danish populations’ preferences for pharmacogenetic testing using a
discrete choice experiment. The case of treating depression.
Value Health.
2009;
12
560-567
60
Kenny P, Hall J, Viney R et al.
Do participants understand a stated preference health survey? A qualitative approach
to assessing validity.
Int J Technol Assess Health Care.
2003;
19
664-681
61
Fraenkel L.
Conjoint Analysis at the Individual Patient Level: Issues to Consider as We Move from
a Research to a Clinical Tool.
Patient.
2008;
1
251-253
62 Lichtenstein S, Slovic P. The construction of preference. Cambridge University
Press. Cambridge; 2006
63
Tversky A, Kahneman D.
The framing of decisions and the psychology of choice.
Science.
1981;
211
453-458
64
Howard K, Salkeld G.
Does Attribute Framing in Discrete Choice Experiments Influence Willingness to Pay?
Results from a Discrete Choice Experiment in Screening for Colorectal Cancer.
Value Health.
2009;
12
354-363
65 Brocke M. Präferenzmessung durch die Discrete Choice-Analyse. Effekte der Aufgabenkomplexität. Gabler.
Wiesbaden; 2006
66 Zwerina K. Discrete Choice Experiments in Marketing. Use of Priors in Efficient
Choice Designs and Their Application to Individual Preference Measurement. Physica-Verlag.
Heidelberg; 1997
67
Sandor Z, Wedel M.
Heterogeneous conjoint choice designs.
Journal of Marketing Research.
2005;
42
210-218
68 DesignDecisionWiki .Software for discrete choice model estimation. http://ddl.me.cmu.edu/ddwiki/index.php/Software_for_discrete_choice_model_estimation
69 Royal Economic Society .Econometric Software Links. http://www.feweb.vu.nl/econometricLinks/software.html
70
Hauber A B.
Issues that May Affect the Validity and Reliability of Willingness-to-Pay Estimates
in Stated-Preference Studies.
The Patient: Patient-Centered Outcomes Research.
2008;
1
249-250
71
Telser H, Becker K, Zweifel P.
Validity and Reliability of Willingness-to-Pay Estimates: Evidence from Two Overlapping
Discrete-Choice Experiments.
The Patient: Patient-Centered Outcomes Research.
2008;
1
283-298
72
Schwappach D L, Strasmann T J.
„Quick and dirty numbers”? The reliability of a stated-preference technique for the
measurement of preferences for resource allocation.
J Health Econ.
2006;
25
432-448
73
Seston E M, Elliott R A, Noyce P R et al.
Women’s preferences for the provision of emergency hormonal contraception services.
Pharm World Sci.
2007;
29
183-189
74
Lancsar E, Louviere J.
Deleting ‘irrational’ responses from discrete choice experiments: a case of investigating
or imposing preferences?.
Health Econ.
2006;
15
797-811
75
Bryan S, Dolan P.
Discrete choice experiments in health economics. For better or for worse?.
Eur J Health Econ.
2004;
5
199-202
76
Lloyd A, Doyle S, Dewilde S et al.
Preferences and utilities for the symptoms of moderate to severe allergic asthma.
Eur J Health Econ.
2008;
9
275-284
77
Bryan S, Gold L, Sheldon R et al.
Preference measurement using conjoint methods: an empirical investigation of reliability.
Health Econ.
2000;
9
385-395
78
Skjoldborg U S, Lauridsen J, Junker P.
Reliability of the discrete choice experiment at the input and output level in patients
with rheumatoid arthritis.
Value Health.
2009;
12
153-158
79 Payne J W, Bettmann J R, Luce M F. et al .Behavioral Decision Research. An Overview.
In Birnbaum M E, (Hrsg.) Measurement, Judgment and Decision Making. San Diego: Academic
Press; 1998: 303-359
80 Gigerenzer G, Todd P. ABC Research Group .Simple Heuristics that Make us Smart. Oxford
University Press. New York; 1999
81
Til J A, Stiggelbout A M, Ijzerman M J.
The effect of information on preferences stated in a choice-based conjoint analysis.
Patient Educ Couns.
2009;
74
264-271
82
Zeliadt S B, Ramsey S D, Penson D F et al.
Why do men choose one treatment over another? A review of patient decision making
for localized prostate cancer.
Cancer.
2006;
106
1865-1874
83
Bech van M, Kjaer T, Lauridsen J.
Does the number of choice sets matter? Results from a web survey applying a discrete
choice experiment.
Health Econ.
2010;
Feb 8. [Epub ahead of print]
84
Witt J, Scott A, Osborne R H.
Designing choice experiments with many attributes. An application to setting priorities
for orthopaedic waiting lists.
Health Econ.
2009;
18
681-696
85
Sculpher M, Bryan S, Fry P et al.
Patients’ preferences for the management of non-metastatic prostate cancer: discrete
choice experiment.
BMJ.
2004;
328
382
86
Ryan M, Farrar S.
Using conjoint analysis to elicit preferences for health care.
BMJ.
2000;
320
1530-1533
87 Hensel-Börner S. Validität computergestützter hybrider Conjoint-Analysen. Gabler.
Wiesbaden; 2000
88
Gerard K, Shanahan M, Louviere J.
Using stated preference discrete choice modelling to inform health care decision-making:
A pilot study of breast screening participation.
Applied Economics.
2003;
35
1073
89
Ryan M, Wordsworth S.
Sensitivity of Willingnes to Pay Estimates to the Level of Attributes in Discrete
Choice Experiments.
Scottish Journal of Political Economy.
2000;
47
504
90
Mark T L, Swait J.
Using stated preference and revealed preference modeling to evaluate prescribing decisions.
Health Econ.
2004;
13
563-573
91
Gunther O H, Kurstein B, Riedel-Heller S G et al.
The role of monetary and nonmonetary incentives on the choice of practice establishment:
a stated preference study of young physicians in Germany.
Health Serv Res.
2010;
45
212-229
92
Ryan M, Watson V.
Comparing welfare estimates from payment card contingent valuation and discrete choice
experiments.
Health Econ.
2009;
18
389-401
93
Coast J, Salisbury C, Berker de D et al.
Preferences for aspects of a dermatology consultation.
Br J Dermatol.
2006;
155
387-392
94
Coast J, Flynn T, Sutton E et al.
Investigating Choice Experiments for Preferences of Older People (ICEPOP): evaluative
spaces in health economics.
J Health Serv Res Policy.
2008;
13 Suppl 3
31-37
95
Elrod T, Louviere J J, Davey K S.
An Empirical Comparison of Ratings-Based and Choice-Based Conjoint Models.
Journal of Marketing Research (JMR).
1992;
29
368-377
96
Flynn T N, Louviere J J, Peters T J et al.
Best-worst scaling: What it can do for health care research and how to do it.
J Health Econ.
2007;
26
171-189
97
Coast J, Horrocks S.
Developing attributes and levels for discrete choice experiments using qualitative
methods.
J Health Serv Res Policy.
2007;
12
25-30
98
Grewal I, Lewis J, Flynn T et al.
Developing attributes for a generic quality of life measure for older people: preferences
or capabilities?.
Soc Sci Med.
2006;
62
1891-1901
99
Swancutt D R, Greenfield S M, Wilson S.
Women’s colposcopy experience and preferences: a mixed methods study.
BMC Womens Health.
2008;
8
2
100
Cunningham C E, Deal K, Rimas H et al.
Modeling the information preferences of parents of children with mental health problems:
a discrete choice conjoint experiment.
J Abnorm Child Psychol.
2008;
36
1123-1138
101
Kievit W, Hulst van L, Riel van P et al.
Factors that influence rheumatologists’ decisions to escalate care in rheumatoid arthritis:
results from a choice-based conjoint analysis.
Arthritis Care Res (Hoboken).
2010;
62
842-847
102
Haughney J, Partridge M R, Vogelmeier C et al.
Exacerbations of COPD: quantifying the patient’s perspective using discrete choice
modelling.
Eur Respir J.
2005;
26
623-629
103 Himme A. Conjoint-Analysen. In Albers S, Klapper D, Konradt U, (Hrsg.) Methodik
der empirischen Forschung.. 3rd ed Wiesbaden: Gabler; 2009: 283-299
104 Baumgartner B, Steiner W J. Hierarchisch bayesianische Methoden bei der Conjointanalyse.
In Baier D, Brusch M, (Hrsg.) Conjointanalyse.. Berlin Heidelberg: Springer; 2009:
147-159
105
Regier D A, Ryan M, Phimister E et al.
Bayesian and classical estimation of mixed logit: An application to genetic testing.
J Health Econ.
2009;
28
598-610
106
Regier D A, Friedman J M, Makela N et al.
Valuing the benefit of diagnostic testing for genetic causes of idiopathic developmental
disability: willingness to pay from families of affected children.
Clin Genet.
2009;
75
514-521
107
Hole A R.
Modelling heterogeneity in patients’ preferences for the attributes of a general practitioner
appointment.
J Health Econ.
2008;
27
1078-1094
108 Gerard K, Currie G. Using discrete choice experiments in health economics. In
Jones A, (Hrsg.) The Elgar Companion to Health Economics.. Bodmin, Cornwall: MPG
Books; 2006: 405-414
109
Nayaradou M, Berchi C, Dejardin O et al.
Eliciting population preferences for mass colorectal cancer screening organization.
Med Decis Making.
2010;
30
224-233
110
Chuck A, Adamowicz W, Jacobs P et al.
The Willingness to Pay for Reducing Pain and Pain-Related Disability.
Value Health.
2009;
12
498-506
Dipl.-Kfm. Dominik Rottenkolber, MBR
Lehrstuhl für Gesundheitsökonomie und Management im Gesundheitswesen, Ludwig-Maximilians-Universität
München
Ludwigstr. 28 RG
80539 München
Email: rottenkolber@bwl.lmu.de