Fortschr Neurol Psychiatr 2011; 79(4): 204-212
DOI: 10.1055/s-0029-1245770
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Bedeutung des glutamatergen Systems für Pathophysiologie und Pharmakotherapie der Depression: präklinische und klinische Daten

The Role of the Glutamatergic System in Pathophysiology and Pharmacotherapy for Depression: Preclinical and Clinical DataG. Paslakis1 , P. Gass1 , M. Deuschle1
  • 1Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Mannheim
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. November 2010 (online)

Zusammenfassung

Dem glutamatergen System wird eine zunehmende Rolle in der Pathophysiologie affektiver Störungen zugeschrieben. Der Neurotransmitter Glutamat ist der wichtigste exzitatorische Transmitter im zentralen Nervensystem. An der Regulation des glutamatergen Systems sind Gliazellen maßgeblich beteiligt. In verschiedenen Untersuchungen wurde eine Dysfunktion bzw. reduzierte Anzahl von Gliazellen bei Patienten mit depressiver Störung beschrieben. Daraus könnte sich bei der Depression eine Überfunktion des glutamatergen Systems mit einer toxisch wirkenden Akkumulation von Glutamat entwickeln. Gängige Antidepressiva greifen in den Glutamat-Metabolismus ein und antiglutamaterge Substanzen (z. B. Riluzol) und NMDA-Rezeptor-Antagonisten (z. B. Ketamin) zeigten antidepressive Wirksamkeit in hauptsächlich präklinischen und einigen klinischen Studien. Weitere Substanzen sind in Prüfung. Diese Übersicht liefert Einblicke über die neuesten Entwicklungen auf diesem Gebiet.

Abstract

An increasing significance has been attributed to the glutamatergic system in the pathophysiology of affective disorders. Glutamate is the most important excitatory neurotransmitter in the central nervous system. Glia cells are crucial regulators of the glutamatergic metabolism. Several studies have reported a dysfunction or reduced number of glia cells in patients suffering from depression. This could result in hyperfunctioning of the glutamatergic system leading to a toxic accumulation of glutamate. Commonly used antidepressants influence the glutamate metabolism and antiglutamatergic substances [e. g., riluzol] and NMDA-receptor antagonists [e. g., ketamine] have shown antidepressant properties in mostly preclinical and some clinical trials. Further substances are currently being investigated. This review provides an insight into the newest developments in this field.

Literatur

  • 1 Ustün T B, Ayuso-Mateos J L, Chatterji S et al. Global burden of depressive disorders in the year 2000.  Br J Psychiatry. 2004;  184 386-392
  • 2 Paykel E S, Brugha T, Fryers T. Size and burden of depressive disorders in Europe.  Eur Neuropsychopharmacol. 2005;  15 411-423
  • 3 Kessler R C, Chiu W T, Demler O et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.  Arch Gen Psychiatry. 2005;  62 617-627
  • 4 Trivedi M H, Rush A J, Wisniewski S R et al. STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D. Implications for clinical practice.  Am J Psychiatry. 2006;  163 28-40
  • 5 Thase M E. Therapeutic alternatives for difficult-to-treat depression: a narrative review of the state of the evidence.  CNS Spectr. 2004;  9 808-821
  • 6 DeBattista C. Augmentation and combination strategies for depression.  J Psychopharmacol. 2006;  20 11-18
  • 7 Fava M, Rush A J. Current status of augmentation and combination treatments for major depressive disorder: a literature review and a proposal for a novel approach to improve practice.  Psychother Psychosom. 2006;  75 139-153
  • 8 Frieling H, Hillemacher T, Demling J H et al. New options in the treatment of depression.  Fortschr Neurol Psychiatr. 2007;  75 641-652 Review. German
  • 9 Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders.  CNS Spectrom. 2005;  10 808-819
  • 10 Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder.  Brain Res Rev. 2009;  61 105-123
  • 11 Pittenger C, Sanacora G, Krystal J H. The NMDA receptor as a therapeutic target in major depressive disorder.  CNS Neurol Disord Drug Targets. 2007;  6 101-115
  • 12 Rajkowska G, Miguel-Hidalgo J J. Gliogenesis and glial pathology in depression.  CNS Neurol Disord Drug Targets. 2007;  6 219-233
  • 13 Mao L, Tang Q et al. Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured rat striatal neurons.  Eur J Neurosci. 2004;  19 1207-1216
  • 14 Mao L, Yang L et al. Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons.  J Biol Chem. 2005;  280 12602-12610
  • 15 Riccio A, Ginty D D. What a privilege to reside at the synapse: NMDA receptor signaling to CREB.  Nature Neuroscience. 2002;  5 389-390
  • 16 Chourbaji S, Brandwein C, Gass P. Altering BDNF expression by genetics and/or environment: Impact for emotional and depression-like behaviour in laboratory mice.  Neurosci Biobehav Rev. 2010;  [Epub ahead of print]
  • 17 Gass P, Hellweg R. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker for affective disorders?.  Int J Neuropsychopharmacol. 2010;  Epub 2009 Dec 9 13 1-4
  • 18 Hellweg R, Ziegenhorn A, Heuser I et al. Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment.  Pharmacopsychiatry. 2008;  41 66-71
  • 19 Hardingham G E, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.  Nat Neurosci. 2002;  5 405-414
  • 20 Ivanov A, Pellegrino C, Rama S et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons.  J Physiol. 2006;  572 789-798
  • 21 Hardingham G E, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.  Nat Neurosci. 2002;  5 405-414
  • 22 Kim J S, Schmid-Burgk W, Claus D et al. Increased serum glutamate in depressed patients.  Arch Psychiatr Nervenkr. 1982;  232 299-304
  • 23 Altamura C A, Mauri M C, Ferrara A et al. Plasma and platelet excitatory amino acids in psychiatric disorders.  Am J Psychiatry. 1993;  150 1713-1731
  • 24 Mitani H, Shirayama Y, Yamada T et al. Correlation between plasma levels of glutamate, alanine and serine with severity of depression.  Prog Neuropsychopharmacol Biol Psychiatry. 2006;  30 1155-1158
  • 25 Levine J, Panchalingam K, Rapoport A et al. Increased cerebrospinal fluid glutamine levels in depressed patients.  Biol Psychiatry. 2000;  47 586-593
  • 26 Maes M, Verkerk R, Vandoolaeghe E et al. Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity.  Acta Psychiatr Scand. 1998;  97 302-308
  • 27 Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders.  Biol Psychiatry. 2007;  62 1310-1316
  • 28 Francis P T, Poynton A, Lowe S L et al. Brain amino acid concentrations and Ca2 + -dependent release in intractable depression assessed antemortem.  Brain Res. 1989;  494 315-324
  • 29 Law A J, Deakin J F. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses.  NeuroReport. 2001;  12 2971-2974
  • 30 Nudmamud-Thanoi S, Reynolds G P. The NR 1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders.  Neurosci Lett. 2004;  372 173-177
  • 31 Beneyto M, Kristiansen L V, Oni-Orisan A et al. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders.  Neuropsychopharmacology. 2007;  32 1888-1902
  • 32 Feyissa A M, Chandran A, Stockmeier C A et al. Reduced levels of NR 2A and NR 2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression.  Prog Neuropsychopharmacol Biol Psychiatry. 2009;  33 70-75
  • 33 Karolewicz B, Feyissa A M, Chandran A et al. Glutamate receptors expression in postmortem brain from depressed subjects.  Biol Psychiatry. 2009;  65 177
  • 34 Hasler G. Abnormal prefrontal glutamatergic and GABAeric systems in mood and anxiety disorders.  Biol Psychiatry. 2009;  65 176-177
  • 35 Karolewicz B, Stockmeier C A, Ordway G A et al. Elevated levels of the NR 2C subunit of the NMDA receptor in the locus coeruleus in depression.  Neuropsychopharmacol. 2005;  30 1557-1567
  • 36 Meador-Woodruff J H, Hogg Jr A J, Smith R E. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder.  Brain Res Bull. 2001;  55 631-640
  • 37 Choudary P V, Molnar M, Evans S J et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.  Proc Natl Acad Sci USA. 2005;  102 15653-15658
  • 38 Sanacora G, Gueorguieva R, Epperson C N et al. Subtype-specific alterations of -aminobutyric acid and glutamate in patients with major depression.  Arch Gen Psychiatry. 2004;  61 705-713
  • 39 Auer D P, Putz B, Kraft E et al. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study.  Biol Psychiatry. 2000;  47 305-313
  • 40 Ajilore O, Haroon E, Kumaran S et al. Measurement of brain metabolites in patients with type 2 diabetes and major depression using proton magnetic resonance spectroscopy.  Neuropsychopharmacology. 2007;  32 1224-1231
  • 41 Hasler G, Veen J W, Tumonis van der T et al. Reduced prefrontal glutamate/glutamine and -aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.  Arch Gen Psychiatry. 2007;  64 193-200
  • 42 Block W, Träber F, Widdern von O et al. Proton MR spectroscopy of the hippocampus at 3T in patients with unipolar major depressive disorder: correlates and predictors of treatment responses.  Int J Neuropsychopharmacol. 2009;  12 415-422
  • 43 Kendler K S, Kuhn J, Prescott C A. The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression.  Am J Psychiatry. 2004;  161 631-636
  • 44 Sapolsky R M. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death.  Biol Psychiatry. 2000;  48 755-765
  • 45 Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders.  Biol Psychiatry. 2002;  51 775-787
  • 46 Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam.  Neuroscience. 1997;  77 65-73
  • 47 Banasr M, Valentine G W, Li X Y et al. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat.  Biol Psychiatry. 2007;  62 496-504
  • 48 Czeh B, Lucassen P J. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated?.  Eur Arch Psychiatry Clin Neurosci. 2007;  257 250-60
  • 49 Czeh B, Muller-Keuker J I, Rygula R et al. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment.  Neuropsychopharmacology. 2007;  32 1490-1503
  • 50 Nowak G, Trullas R, Layer R T et al. Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid.  J Pharmacol Exp Ther. 1993;  265 1380-1386
  • 51 Nowak G, Li Y, Paul I A. Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram treatment.  Eur J Pharmacol. 1996;  295 75-85
  • 52 Nowak G, Legutko B, Skolnick P et al. Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors.  Eur J Pharmacol. 1998;  342 367-370
  • 53 Paul I A, Nowak G, Layer R T et al. Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments.  J Pharmacol Exp Ther. 1994;  269 95-102
  • 54 Skolnick P, Layer R T, Popik P et al. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression.  Pharmacopsychiatry. 1996;  29 23-26
  • 55 Boyer P A, Skolnick P, Fossom L H. Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain.  J Mol Neurosci. 1998;  10 219-233
  • 56 Michael-Titus A T, Bains S, Jeetle J et al. Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex – a possible mechanism of neuroprotection in major depression?.  Neuroscience. 2000;  100 681-684
  • 57 Tokarski K, Bobula B, Wabno J et al. Repeated administration of imipramine attenuates glutamatergic transmission in rat frontal cortex.  Neuroscience. 2008;  153 789-795
  • 58 Golembiowska K, Dziubina A. Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex.  Pol J Pharmacol. 2000;  52 441-448
  • 59 Sernagor E, Kuhn D, Vyklicky Jr L et al. Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.  Neuron. 1989;  2 1221-1227
  • 60 Cai Z, McCaslin P P. Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduce kainate- and Nmethyl- D-aspartate-induced intracellular Ca2 + levels in neuronal culture.  Eur J Pharmacol. 1992;  219 53-57
  • 61 Watanabe Y, Saito H, Abe K. Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction of long-term potentiation in rat hippocampal slices.  Neuropharmacology. 1993;  32 479-486
  • 62 Takebayashi M, Kagaya A, Inagaki M et al. Effects of antidepressants on gamma-aminobutyric acid- and N-methyl-D-aspartate-induced intracellular Ca(2 + ) concentration increases in primary cultured rat cortical neurons.  Neuropsychobiology. 2000;  42 120-126
  • 63 Bonanno G, Giambelli R, Raiteri L et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus.  J Neurosci. 2005;  25 3270-3279
  • 64 Szasz B K, Mike A, Karoly R et al. Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system.  Biol Psychiatry. 2007;  62 1303-1309
  • 65 Mayer A, Szasz B K, Kiss J P. Inhibitory effect of antidepressants on the NMDA-evoked ([3] H)noradrenaline release from rat hippocampal slices.  Neurochem Int. 2009;  55 383-388
  • 66 Svenningsson P, Tzavara E T, Witkin J M et al. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac).  Proc Natl Acad Sci USA. 2002;  99 3182-3187
  • 67 Svenningsson P, Bateup H, Qi H et al. Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine.  Eur J Neurosci. 2007;  26 3509-3517
  • 68 Du J, Suzuki K, Wei Y et al. The Anticonvulsants lamotrigine, riluzole and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders.  Neuropsychopharmacology. 2007;  32 793-802
  • 69 Martinez-Turrillas R, Frechilla D, De lRio J. Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus.  Neuropharmacology. 2002;  43 1230-1237
  • 70 Barbon A, Popoli M, La V ia L et al. Regulation of editing and expression of glutamate alpha-amino-propionic-acid [AMPA]/kainate receptors by antidepressant drugs.  Biol Psychiatry. 2006;  59 713-720
  • 71 Bobula B, Tokarski K, Hess G. Repeated administration of antidepressants decreases field potenzials in rat frontal cortex.  Neuroscience. 2003;  120 765-769
  • 72 Bobula B, Hess G. Antidepressant treatments-induced modifications of glutamatergic transmission in rat frontal cortex.  Pharmacol Rep. 2008;  60 865-871
  • 73 Dixon J F, Hokin L E. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex.  Proc Natl Acad Sci USA. 1998;  95 8363-8368
  • 74 Greenhill S D, Jones R S. Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex in vitro.  Neuroscience. 2010;  167 456-474
  • 75 Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions.  Eur J Pharmacol. 1990;  185 1-10
  • 76 Kos T, Legutko B, Danysz W et al. Enhancement of antidepressant-like effects but not brain-derived neurotrophic factor mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in mice.  J Pharmacol Exp Ther. 2006;  318 1128-1136
  • 77 Chaturvedi H K, Bapna J S, Chandra D. Effect of fluvoxamine and N-methyl-Daspartate receptor antagonists on shock-induced depression in mice.  Indian J Physiol Pharmacol. 2001;  45 199-207
  • 78 Yilmaz A, Schulz D, Aksoy A et al. Prolonged effect of an anesthetic dose of ketamine on behavioral despair.  Pharmacol Biochem Behav. 2002;  71 341-344
  • 79 Maeng S, Zarate Jr C A, Du J et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of &alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.  Biol Psychiatry. 2008;  63 349-352
  • 80 Garcia L S, Comim C M, Valvassori S S et al. Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels.  Basic Clin Pharmacol Toxicol. 2008;  103 502-506
  • 81 Garcia L S, Comim C M, Valvassori S S et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus.  Prog Neuropsychopharmacol Biol Psychiatry. 2008;  32 140-144
  • 82 Engin E, Treit D, Dickson C T. Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models.  Neuroscience. 2009;  161 359-369 Erratum in: Neuroscience 2009; 162: 1438 – 1439
  • 83 Kos T, Popik P, Pietraszek M et al. Effect of 5-HT3 receptor antagonist MDL 72 222 on behaviors induced by ketamine in rats and mice.  Eur Neuropsychopharmacol. 2006;  16 297-310
  • 84 Maj J, Rogóz Z. Synergistic effect of amantadine and imipramine in the forced swimming test.  Pol J Pharmacol. 2000;  52 111-114
  • 85 Almeida R C, Souza D G, Soletti R C et al. Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice.  Neurosci Lett. 2006;  395 93-97
  • 86 Rogoz Z, Skuza G, Maj J et al. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats.  Neuropharmacology. 2002;  42 1024-1030
  • 87 Banasr M, Chowdhury G M, Terwilliger R et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioural deficits by the glutamate-modulating drug riluzole.  Mol Psychiatry. 2008;  [Epub ahead of print]
  • 88 Alt A, Witkin J M, Bleakman D. A role for AMPA receptors in mood disorders.  Curr Pharm Des. 2005;  11 1511-1527
  • 89 Bleakman D, Alt A, Witkin J M. AMPA receptors in the therapeutic management of depression.  CNS Neurol Disord Drug Targets. 2007;  6 117-126
  • 90 O’Neill M J, Witkin J M. AMPA receptor potentiators: application for depression and Parkinson’s disease.  Curr Drug Targets. 2007;  8 603-620
  • 91 Chourbaji S, Vogt M A, Fumagalli F et al. AMPA receptor subunit 1 [GluR-A] knockout mice model the glutamate hypothesis of depression.  FASEB J. 2008;  22 3129-3134
  • 92 Belozertseva V, Kos T, Popik P et al. Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests.  Eur Neuropsychopharmacol. 2007;  17 172-179
  • 93 Li X, Need A B, Baez M et al. Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice.  J Pharmacol Exp Ther. 2006;  319 254-259
  • 94 Chaki S, Yoshikawa R, Hirota S et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity.  Neuropharmacology. 2004;  46 457-467
  • 95 Bespalov A Y, Gaalen M M, Sukhotina I A et al. Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341 495, in animal models of anxiety and depression.  Eur J Pharmacol. 2008;  592 96-102
  • 96 Pałucha van A, Tatarczyńska E, Brański P et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats.  Neuropharmacology. 2004;  46 151-159
  • 97 Palucha A, Klak K, Branski P et al. Activation of the mGlu7 receptor elicits antidepressant-like effects in mice.  Psychopharmacology. 2007;  194 555-562
  • 98 Cryan J F, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety.  Nat Rev Drug Discov. 2005;  4 775-790
  • 99 Benoit E, Escande D. Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre.  Pflugers Arch. 1991;  419 603-609
  • 100 Zarate Jr C A, Payne J L, Quiroz J et al. An open-label trial of riluzole in patients with treatment-resistant major depression.  Am J Psychiatry. 2004;  161 171-174
  • 101 Sanacora G, Kendell S F, Fenton L et al. Riluzole augmentation for treatment-resistant depression.  Am J Psychiatry. 2004;  161 2132
  • 102 Zarate Jr C A, Quiroz J A, Singh J B et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression.  Biol Psychiatry. 2005;  57 430-432
  • 103 Mathew S J, Amiel J M, Coplan J D et al. Open-label trial of riluzole in generalized anxiety disorder.  Am J Psychiatry. 2005;  162 2379-2381
  • 104 Mathew S J, Murrough J W, aan het Rot M et al. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial.  Int J Neuropsychopharmacol. 2010;  13 71-82
  • 105 Ferguson J M, Shingleton R N. An open-label, flexible-dose study of memantine in major depressive disorder.  Clin Neuropharmacol. 2007;  30 136-144
  • 106 Zarate Jr C A, Singh J B, Quiroz J A et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression.  Am J Psychiatry. 2006;  163 153-155
  • 107 Muhonen L H, Lönnqvist J, Juva K et al. Double-blind, randomized comparison of memantine and escitalopram for the treatment of major depressive disorder comorbid with alcohol dependence.  J Clin Psychiatry. 2008;  69 392-399
  • 108 Berman R M, Cappiello A, Anand A et al. Antidepressant effects of ketamine in depressed patients.  Biol Psychiatry. 2000;  47 351-354
  • 109 Zarate Jr C A, Singh J B, Carlson P J et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.  Arch Gen Psychiatry. 2006;  63 856-864
  • 110 Paslakis G, Gilles M, Meyer-Lindenberg A et al. Oral Administration of the NMDA Receptor Antagonist S-Ketamine as Add-On Therapy of Depression: A Case Series.  Pharmacopsychiatry. 2010;  43 33-35
  • 111 Salvadore G, Cornwell B R, Colon-Rosario V et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine.  Biol Psychiatry. 2009;  65 289-295
  • 112 Kinsler R, Duman R S. Acute ketamine administration increases VEGF expression in the hippocampus: potenzial role in the rapid antidepressant effects of ketamine. Abstract of Society for Neuroscience Meeting at Washington DC 2008 ; #56.14
  • 113 Warner-Schmidt J L, Duman R S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants.  Proc Natl Acad Sci USA. 2007;  104 4647-4652
  • 114 Machado-Vieira R, Yuan P, Brutsche N et al. Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist.  J Clin Psychiatry. 2009;  ; [Epub ahead of print]
  • 115 Stahl S M. The sigma enigma: can sigma receptors provide a novel target for disorders of mood and cognition?.  J Clin Psychiatry. 2008;  69 1673-1674
  • 116 Borza I, Domány G. NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore.  Curr Top Med Chem. 2006;  6 687-695
  • 117 Inta D, Trusel M, Riva M A et al. Differential c-Fos induction by different NMDA receptor antagonists with antidepressant efficacy: potenzial clinical implications.  Int J Neuropsychopharmacol. 2009;  12 1133-1136
  • 118 Preskorn S H, Baker B, Kolluri S et al. An innovative design to establish proof of concept of the antidepressant effects of the NR 2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder.  J Clin Psychopharmacol. 2008;  28 631-637
  • 119 Mineur Y S, Picciotto M R, Sanacora G. Antidepressant-like effects of ceftriaxone in male C 57BL/ 6J mice.  Biol Psychiatry. 2007;  61 250-252
  • 120 Rothstein J D, Patel S, Regan M R et al. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression.  Nature. 2005;  433 73-77
  • 121 Berk M, Copolov D L, Dean O et al. N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized placebo-controlled trial.  Biol Psychiatry. 2008;  64 468-475

Dr. Georgios Paslakis

Klinik für Psychiatrie und Psychotherapie

Zentralinstitut für Seelische Gesundheit

J5

68159 Mannheim

eMail: Georgios.Paslakis@zi-mannheim.de

    >