Zusammenfassung
Die Magnetresonanztomografie (MRT) bei kontinuierlich bewegtem Patiententisch ist
eine moderne Untersuchungsmethode, um ein erweitertes, stufenloses Bildfeld in z-Richtung
zu akquirieren. Die technische Realisierung kann mittels sehr schneller Sequenzen
wie echoplanarer Bildgebung erfolgen, wobei die Bewegung bei der Bilderstellung und
Rekonstruktion vernachlässigt werden kann. Andere Kontraste erfordern jedoch eine
Bewegungskorrektur, entweder während der Messung oder im Rahmen der Bildberechnung.
In ersten klinischen Studien zeigte die Anwendung schneller Steady-State-Sequenzen
bereits vielversprechende Ergebnisse hinsichtlich der Detektierbarkeit von Metastasen
gegenüber diagnostischen Routineverfahren. Allerdings wird zur Tischbewegung und Positionskontrolle
zusätzliches Equipment benötigt. Die später entwickelte Sliding-Multislice (SMS)-Technik
erfolgt ohne zusätzliche Hardware. Klinische Arbeiten belegen eine gegenüber stationär
aufgenommenen Sequenzen analoge Bildqualität und eine mit der Computertomografie (CT)
vergleichbare Erkennbarkeit von pulmonalen und abdominellen Metastasen. Die kurzen
Untersuchungszeiten ermöglichen eine Integration der MRT bei kontinuierlicher Tischbewegung
in für die Tumordiagnostik spezialisierte, stationäre Protokolle mit dem Ziel einer
Kombination aus lokalem Staging und thorakoabdomineller Metastasensuche in einem Untersuchungsgang.
Neue Kontraste wie Diffusionsbildgebung oder Dixon-Techniken sowie weitere Verbesserungen
des Workflows durch Atemkompensation und intuitive Planungssequenzen befinden sich
in der Entwicklung und werden die klinischen Anwendungsmöglichkeiten dieser Technik
erweitern.
Abstract
Magnetic resonance imaging (MRI) with a continuously moving table (CMT) represents
a novel method allowing for the seamless acquisition of an extended field-of-view
in the z-direction. One option to realize CMT MRI from a technical point of view is
based on very fast sequences like echo planar imaging (EPI). Consequently, table translation
for signal sampling and image reconstruction can be neglected. The acquisition of
different contrasts, however, necessitates table motion correction, either during
acquisition or via post-processing. First clinical studies applying fast steady-state
imaging already yielded promising results with respect to metastasis detection. Nevertheless,
additional equipment has to be installed for table motion and position tracking. In
contrast, the subsequently developed sliding multislice (SMS) technique can be implemented
without any additional hardware. In clinical studies, the achievable image quality
corresponds to stationary sequences. Additionally, the use of SMS for the detection
of pulmonary and abdominal metastases appears to be comparable to computed tomography
(CT). Due to the relatively short examination times, CMT MRI can be integrated into
highly specialized stationary imaging protocols, thus increasing the possibility to
combine local staging with thoracoabdominal metastasis screening within one examination.
New contrasts like diffusion-weighted imaging (DWI) or Dixon techniques as well as
improved workflow including breathing motion compensation and intuitive scout acquisition
have already been proposed and will further expand the clinical applications of this
technique.
Key words
continuously moving table MRI - whole-body MRI - staging
References
- 1
Schaefer J F, Schlemmer H P.
Total-body MR-imaging in oncology.
Eur Radiol.
2006;
16
2000-2015
- 2
Ohlmann-Knafo S, Kirschbaum M, Fenzl G et al.
Diagnostischer Stellenwert der Ganzkörper-MRT und der Skelettszintigrafie in der ossären
Metastasendetektion bei Mammakarzinompatientinnen – eine prospektive Doppelblindstudie
an zwei Klinikzentren.
Fortschr Röntgenstr.
2009;
181
255-263
- 3
Ketelsen D, Rothke M, Aschoff P et al.
Nachweis ossärer Metastasen des Prostatakarzinoms – Vergleich der Leistungsfähigkeit
der Ganzkörper-MRT und der Skelettszintigrafie.
Fortschr Röntgenstr.
2008;
180
746-752
- 4
Ladd S C, Zenge M, Antoch G et al.
MR-Ganzkörperdiagnostik.
Fortschr Röntgenstr.
2006;
178
763-770
- 5
Schmidt G P, Baur-Melnyk A, Haug A et al.
Whole-body MRI at 1.5T and 3T compared with FDG-PET-CT for the detection of tumour
recurrence in patients with colorectal cancer.
Eur Radiol.
2009;
19
1366-1378
- 6
Schmidt G P, Schoenberg S O, Schmid R et al.
Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality
PET-CT.
Eur Radiol.
2007;
17
939-949
- 7
Muller-Horvat C, Radny P, Eigentler T K et al.
Prospective comparison of the impact on treatment decisions of whole-body magnetic
resonance imaging and computed tomography in patients with metastatic malignant melanoma.
Eur J Cancer.
2006;
42
342-350
- 8
Beer M, Stenzel M, Girschick H et al.
Ganzkörper-MRT bei Kindern mit Verdacht auf Osteonekrose nach intensiver Chemotherapie:
Erste Ergebnisse.
Fortschr Röntgenstr.
2008;
180
238-245
- 9
Bohlscheid A, Nuss D, Lieser S et al.
Tumorsuche mittels kernspintomografischer Diffusionsbildgebung.
Fortschr Röntgenstr.
2008;
180
302-309
- 10
Huppertz A, Schmidt M, Wagner M et al.
Ganzkörper-MR-Tomografie im Vergleich zu einem sequenziellen multimodalen diagnostischen
Algorithmus für das Staging von Patienten mit einem Rektumkarzinom: Kostenanalyse.
Fortschr Röntgenstr.
2010;
182
793-802
- 11
Hegenscheid K, Kuhn J P, Volzke H et al.
Ganzkörper-Magnetresonanztomografie von gesunden Probanden: Pilotstudienergebnisse
der populationsbasierten SHIP Studie.
Fortschr Röntgenstr.
2009;
181
748-759
- 12
Honal M, Leupold J, Huff S et al.
Compensation of breathing motion artifacts for MRI with continuously moving table.
Magn Reson Med.
2010;
63
701-712
- 13
Ehman R L, McNamara M T, Pallack M et al.
Magnetic resonance imaging with respiratory gating: techniques and advantages.
Am J Roentgenol.
1984;
143
1175-1182
- 14
Lin W, Guo J, Rosen M A et al.
Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest
and abdominal lesions.
Magn Reson Med.
2008;
60
1135-46
- 15
Bayramoglu S, Kilickesmez O, Cimilli T et al.
T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T 2-weighted
sequences including PROPELLER (BLADE) technique.
Acad Radiol.
2010;
17
368-374
- 16
Ruehm S G, Goyen M, Quick H H et al.
Whole-body MRA on a rolling table platform (AngioSURF).
Fortschr Röntgenstr.
2000;
172
670-674
- 17
Barkhausen J, Quick H H, Lauenstein T et al.
Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling
table platform: feasibility study.
Radiology.
2001;
220
252-256
- 18 Zenge M O, Quick H H, Vogt F M et al. MR Imaging with a continuously rolling table
platform and high-precision position feedback. Proceedings of the 12th Annual Meeting
of ISMRM. Kyoto, Japan; 2004
- 19
Brauck K, Zenge M O, Vogt F M et al.
Feasibility of whole-body MR with T 2- and T 1-weighted real-time steady-state free
precession sequences during continuous table movement to depict metastases.
Radiology.
2008;
246
910-916
- 20
Zenge M O, Ladd M E, Vogt F M et al.
Whole-body magnetic resonance imaging featuring moving table continuous data acquisition
with high-precision position feedback.
Magn Reson Med.
2005;
54
707-711
- 21
Johnson K M, Leavitt G D, Kayser H W.
Total-body MR imaging in as little as 18 seconds.
Radiology.
1997;
202
262-267
- 22
Kruger D G, Riederer S J, Grimm R C et al.
Continuously moving table data acquisition method for long FOV contrast-enhanced MRA
and whole-body MRI.
Magn Reson Med.
2002;
47
224-231
- 23
Fautz H P, Kannengiesser S A.
Sliding multislice (SMS): a new technique for minimum FOV usage in axial continuously
moving-table acquisitions.
Magn Reson Med.
2006;
55
363-370
- 24
Ludwig U, Sommer G, Zaitsev M et al.
2D axial moving table acquisitions with dynamic slice adaptation.
Magn Reson Med.
2006;
55
423-430
- 25
Horvath L J, Burtness B A, McCarthy S et al.
Total-body echo-planar MR imaging in the staging of breast cancer: comparison with
conventional methods--early experience.
Radiology.
1999;
211
119-128
- 26 Weigel M, Fautz H P, Ghanem N et al. Adaptation of HASTE for continuous moving
table acquisition. Proceedings of the 11th Annual Meeting of ISMRM. Toronto, Canada;
2003
- 27
Bornert P, Aldefeld B.
Principles of whole-body continuously-moving-table MRI.
J Magn Reson Imaging.
2008;
28
1-12
- 28
Shankaranarayanan A, Herfkens R, Hargreaves B M et al.
Helical MR: continuously moving table axial imaging with radial acquisitions.
Magn Reson Med.
2003;
50
1053-1060
- 29
Zhu Y, Dumoulin C L.
Extended field-of-view imaging with table translation and frequency sweeping.
Magn Reson Med.
2003;
49
1106-1112
- 30
Aldefeld B, Bornert P, Keupp J.
Continuously moving table 3D MRI with lateral frequency-encoding direction.
Magn Reson Med.
2006;
55
1210-1216
- 31
Kruger D G, Riederer S J, Rossman P J et al.
Recovery of phase inconsistencies in continuously moving table extended field of view
magnetic resonance imaging acquisitions.
Magn Reson Med.
2005;
54
712-717
- 32
Zenge M O, Vogt F M, Brauck K et al.
High-resolution continuously acquired peripheral MR angiography featuring partial
parallel imaging GRAPPA.
Magn Reson Med.
2006;
56
859-865
- 33
Zenge M O, Ladd M E, Quick H H.
Novel reconstruction method for three-dimensional axial continuously moving table
whole-body magnetic resonance imaging featuring autocalibrated parallel imaging GRAPPA.
Magn Reson Med.
2009;
61
867-873
- 34
Keupp J, Aldefeld B, Bornert P.
Continuously moving table SENSE imaging.
Magn Reson Med.
2005;
53
217-220
- 35 Aldefeld B, Bornert P, Keupp J et al. Respiratory-gated continuously moving table
3D MRI. Proceedings of the 14th Scientific Meeting of the ISMRM. Seattle, WA; 2006
- 36 Baumann T, Ludwig U, Pache G et al. Interactive scan-control with online reconstruction
improves axial breath-hold imaging for continuously moving table MRI. European Congress
of Radiology. Vienna, Austria; 2008
- 37 Honal M, Ludwig U, Baumann T. Artifact reduction for multi-breath-hold acquisitions
in MRI with continuously moving table. Proceedings 26th Scientific Meeting ESMRMB. Antalya,
Turkey; 2009
- 38 Honal M, Leupold J, Baumann T. Breathing motion artifact reduction for MRI with
continuously moving table using motion consistent retrospective data selection. Proceedings
of the 18th Annual Meeting of ISMRM. Stockholm, Sweden; 2010
- 39
Sommer G, Fautz H P, Ludwig U et al.
Multicontrast sequences with continuous table motion: a novel acquisition technique
for extended field of view imaging.
Magn Reson Med.
2006;
55
918-922
- 40
Bornert P, Keupp J, Eggers H et al.
Whole-body 3D water/fat resolved continuously moving table imaging.
J Magn Reson Imaging.
2007;
25
660-665
- 41 Klausmann F, Ludwig U, Honal M et al. Accuracy of wholebody fat quantification
with MRI: A comparison to Air-Displacement Plethysmography. Proceedings of the 18th
Annual Meeting of ISMRM. Stockholm, Sweden; 2010
- 42
Kullberg J, Johansson L, Ahlstrom H et al.
Automated assessment of whole-body adipose tissue depots from continuously moving
bed MRI: a feasibility study.
J Magn Reson Imaging.
2009;
30
185-193
- 43 Han Y, Huff S, Hennig J et al. A Novel Whole Body Diffusion Weighted Imaging Technique
with Continuously Moving Table: Preliminary Results. Proceedings of the 18th Annual
Meeting of ISMRM. Stockholm, Sweden; 2010
- 44 Han Y, Ludwig U. Which fat suppression method should be used for countinuously
moving table whole-body diffusion-weighted-imaging? Proceedings of the 18th Annual
Meeting of ISMRM. A Novel Whole Body Diffusion Weighted Imaging Technique with Continuously
Moving Table: Preliminary Results. 2010
- 45
Fenchel M, Thesen S, Schilling A.
Automatic labeling of anatomical structures in MR FastView images using a statistical
atlas.
Med Image Comput Comput Assist Interv.
2008;
11
576-584
- 46
Koken P, Dries S P, Keupp J et al.
Towards automatic patient positioning and scan planning using continuously moving
table MR imaging.
Magn Reson Med.
2009;
62
1067-1072
- 47
Keil A, Wachinger C, Brinker G et al.
Patient position detection for SAR optimization in magnetic resonance imaging.
Med Image Comput Comput Assist Interv.
2006;
9
49-57
- 48
Sommer G, Schaefer A O, Baumann T et al.
Sliding multislice MRI for abdominal staging of patients with pelvic malignancies:
a pilot study.
J Magn Reson Imaging.
2008;
27
666-672
- 49
Bley T A, Tittelbach-Helmrich D, Baumann T et al.
Sliding multislice MRI for abdominal staging of rectal gastrointestinal stromal tumours.
In Vivo.
2007;
21
891-894
- 50
Baumann T, Ludwig U, Pache G et al.
Continuously moving table MRI with sliding multislice for rectal cancer staging: image
quality and lesion detection.
Eur J Radiol.
2010;
73
579-587
- 51
Baumann T, Ludwig U, Pache G et al.
Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using
a free-breathing turbo inversion recovery magnitude sequence.
Invest Radiol.
2008;
43
359-367
- 52 Pache G, Baumann T, Schaefer A O et al. Combined high-resolution pelvic and whole-body
sliding multislice MRI for ovarian cancer staging: Comparison with MSCT. European
Congress of Radiology. Vienna, Austria; 2009
- 53 Schaefer A O, Langer M (eds).. MRI of Rectal Cancer. Springer. Heidelberg, New
York; 2010
- 54
Schafer A O, Baumann T, Pache G et al.
Präoperatives Staging des Rektumkarzinoms.
Radiologe.
2007;
47
635-651
; quiz 652
- 55
Schaefer A O, Langer M.
MRT beim Rektumkarzinom – Erstdiagnose und Rezidive.
Fortschr Röntgenstr.
2010;
182
S 147
- 56
Schaefer O, Langer M.
Detection of recurrent rectal cancer with CT, MRI and PET/CT.
Eur Radiol.
2007;
17
2044-2054
Prof. Arnd-Oliver Schaefer
Radiologische Klinik, Universitätsklinikum Freiburg
Hugstetter Straße 55
79106 Freiburg
Germany
Phone: ++ 49/7 61/2 70 38 94
Fax: ++ 49/7 61/2 70 38 30
Email: arnd-oliver.schaefer@uniklinik-freiburg.de