Semin Thromb Hemost 2009; 35(8): 735-751
DOI: 10.1055/s-0029-1245106
© Thieme Medical Publishers

Inhibitors in Hemophilia A: Advances in Elucidation of Inhibitory Mechanisms and in Inhibitor Management with Bypassing Agents

Natalya M. Ananyeva1 , Timothy K. Lee1 , Nisha Jain2 , Midori Shima3 , Evgueni L. Saenko4
  • 1Laboratory of Hemostasis, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Rockville, Maryland
  • 2Clinical Review Branch, Division of Hematology, Office of Blood Research and Review, CBER, FDA, Rockville, Maryland
  • 3Department of Pediatrics, Nara Medical University, Nara, Japan
  • 4Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
Further Information

Publication History

Publication Date:
18 February 2010 (online)

ABSTRACT

Development of inhibitory antibodies (inhibitors) to factor VIII (FVIII) is the most serious adverse event in replacement therapy of hemophilia A patients. The etiology and management of this condition remain major challenges for both researchers and clinicians. In the present review, we discuss recent advances in understanding the molecular mechanisms by which inhibitors inactivate FVIII and experimental approaches used for the mapping of inhibitor epitopes. We also present a comparative analysis of treatment of hemophilia A patients with inhibitors with currently available bypassing agents—activated prothrombin complex concentrate (FEIBA VH; Baxter Healthcare Corp., Westlake Village, CA) and recombinant activated factor VII (NovoSeven; Novo Nordisk, Princeton, NJ)—and describe some ongoing research programs aimed at developing new treatment options for these patients. Availability of sensitive and standardized laboratory assays that would assist in monitoring the effectiveness of bypass therapies is essential for designing customized treatment regimens and improvement in the management of health conditions of hemophilia patients with inhibitors.

REFERENCES

  • 1 Fay P J. Factor VIII structure and function.  Int J Hematol. 2006;  83(2) 103-108
  • 2 Mannucci P M. Back to the future: a recent history of haemophilia treatment.  Haemophilia. 2008;  14(suppl 3) 10-18
  • 3 DiMichele D M. Inhibitors in hemophilia: a primer. In: Treatment of hemophilia. 4th ed. Montreal, Quebec, Canada; World Federation of Hemophilia 2008
  • 4 Oldenburg J, Pavlova A. Genetic risk factors for inhibitors to factors VIII and IX.  Haemophilia. 2006;  12(suppl 6) 15-22
  • 5 Astermark J, Berntorp E, White G C, Kroner B L. MIBS Study Group . The Malmö International Brother Study (MIBS): further support for genetic predisposition to inhibitor development in hemophilia patients.  Haemophilia. 2001;  7(3) 267-272
  • 6 Scharrer I, Bray G L, Neutzling O. Incidence of inhibitors in haemophilia A patients—a review of recent studies of recombinant and plasma-derived factor VIII concentrates.  Haemophilia. 1999;  5(3) 145-154
  • 7 Viel K R, Ameri A, Abshire T C et al.. Inhibitors of factor VIII in black patients with hemophilia.  N Engl J Med. 2009;  360(16) 1618-1627
  • 8 Oldenburg J, Tuddenham E. Inhibitors to factor VIII—molecular basis. In: Lee CA, Berntorp EE, Hoots WK Textbook of hemophilia. New York, NY; Blackwell 2005: 59-63
  • 9 Kempton C L, White II G C. How we treat a hemophilia A patient with a factor VIII inhibitor.  Blood. 2009;  113(1) 11-17
  • 10 Goudemand J, Rothschild C, Demiguel V FVIII-LFB and Recombinant FVIII study groups et al. Influence of the type of factor VIII concentrate on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A.  Blood. 2006;  107(1) 46-51
  • 11 Gouw S C, van den Berg H M, le Cessie S, van der Bom J G. Treatment characteristics and the risk of inhibitor development: a multicenter cohort study among previously untreated patients with severe hemophilia A.  J Thromb Haemost. 2007;  5(7) 1383-1390
  • 12 Gouw S C, van der Bom J G, Auerswald G, Ettinghausen C E, Tedgård U, van den Berg H M. Recombinant versus plasma-derived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study.  Blood. 2007;  109(11) 4693-4697
  • 13 Hoots W K, Lusher J. High-titer inhibitor development in hemophilia A: lack of product specificity.  J Thromb Haemost. 2004;  2(2) 358-359
  • 14 Saenko E L, Ananyeva N M, Tuddenham E G, Kemball-Cook G. Factor VIII—novel insights into form and function.  Br J Haematol. 2002;  119(2) 323-331
  • 15 Scandella D H, Nakai H, Felch M et al.. In hemophilia A and autoantibody inhibitor patients: the factor VIII A2 domain and light chain are most immunogenic.  Thromb Res. 2001;  101(5) 377-385
  • 16 Healey J F, Lubin I M, Nakai H et al.. Residues 484-508 contain a major determinant of the inhibitory epitope in the A2 domain of human factor VIII.  J Biol Chem. 1995;  270(24) 14505-14509
  • 17 Fay P J, Scandella D. Human inhibitor antibodies specific for the factor VIII A2 domain disrupt the interaction between the subunit and factor IXa.  J Biol Chem. 1999;  274(42) 29826-29830
  • 18 Fay P J, Koshibu K. The A2 subunit of factor VIIIa modulates the active site of factor IXa.  J Biol Chem. 1998;  273(30) 19049-19054
  • 19 Ansong C, Miles S M, Fay P J. Epitope mapping factor VIII A2 domain by affinity-directed mass spectrometry: residues 497-510 and 584-593 comprise a discontinuous epitope for the monoclonal antibody R8B12.  J Thromb Haemost. 2006;  4(4) 842-847
  • 20 Healey J F, Parker E T, Barrow R T, Langley T J, Church W R, Lollar P. The humoral response to human factor VIII in hemophilia A mice.  J Thromb Haemost. 2007;  5(3) 512-519
  • 21 Healey J F, Barrow R T, Tamim H M et al.. Residues Glu2181-Val2243 contain a major determinant of the inhibitory epitope in the C2 domain of human factor VIII.  Blood. 1998;  92(10) 3701-3709
  • 22 Scandella D, Gilbert G E, Shima M et al.. Some factor VIII inhibitor antibodies recognize a common epitope corresponding to C2 domain amino acids 2248 through 2312, which overlap a phospholipid-binding site.  Blood. 1995;  86(5) 1811-1819
  • 23 Pratt K P, Shen B W, Takeshima K, Davie E W, Fujikawa K, Stoddard B L. Structure of the C2 domain of human factor VIII at 1.5 A resolution.  Nature. 1999;  402(6760) 439-442
  • 24 Stoilova-McPhie S, Villoutreix B O, Mertens K, Kemball-Cook G, Holzenburg A. 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography.  Blood. 2002;  99(4) 1215-1223
  • 25 Spiegel Jr P C, Jacquemin M, Saint-Remy J M, Stoddard B L, Pratt K P. Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII.  Blood. 2001;  98(1) 13-19
  • 26 Nogami K, Shima M, Giddings J C, Takeyama M, Tanaka I, Yoshioka A. Relationship between the binding sites for von Willebrand factor, phospholipid, and human factor VIII C2 inhibitor alloantibodies within the factor VIII C2 domain.  Int J Hematol. 2007;  85(4) 317-322
  • 27 Saenko E L, Scandella D. The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von Willebrand factor.  J Biol Chem. 1997;  272(29) 18007-18014
  • 28 Gilbert G E, Kaufman R J, Arena A A, Miao H, Pipe S W. Four hydrophobic amino acids of the factor VIII C2 domain are constituents of both the membrane-binding and von Willebrand factor-binding motifs.  J Biol Chem. 2002;  277(8) 6374-6381
  • 29 Saenko E L, Shima M, Gilbert G E, Scandella D. Slowed release of thrombin-cleaved factor VIII from von Willebrand factor by a monoclonal and a human antibody is a novel mechanism for factor VIII inhibition.  J Biol Chem. 1996;  271(44) 27424-27431
  • 30 Meeks S L, Healey J F, Parker E T, Barrow R T, Lollar P. Antihuman factor VIII C2 domain antibodies in hemophilia A mice recognize a functionally complex continuous spectrum of epitopes dominated by inhibitors of factor VIII activation.  Blood. 2007;  110(13) 4234-4242
  • 31 Nogami K, Shima M, Hosokawa K et al.. Role of factor VIII C2 domain in factor VIII binding to factor Xa.  J Biol Chem. 1999;  274(43) 31000-31007
  • 32 Nogami K, Shima M, Hosokawa K et al.. Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Arg1689.  J Biol Chem. 2000;  275(33) 25774-25780
  • 33 Meeks S L, Healey J F, Parker E T, Barrow R T, Lollar P. Nonclassical anti-C2 domain antibodies are present in patients with factor VIII inhibitors.  Blood. 2008;  112(4) 1151-1153
  • 34 Lenting P J, van de Loo J W, Donath M J, van Mourik J A, Mertens K. The sequence Glu1811-Lys1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX.  J Biol Chem. 1996;  271(4) 1935-1940
  • 35 Fijnvandraat K, Celie P H, Turenhout E A et al.. A human alloantibody interferes with binding of factor IXa to the factor VIII light chain.  Blood. 1998;  91(7) 2347-2352
  • 36 Zhong D, Saenko E L, Shima M, Felch M, Scandella D. Some human inhibitor antibodies interfere with factor VIII binding to factor IX.  Blood. 1998;  92(1) 136-142
  • 37 Foster P A, Fulcher C A, Houghten R A, de Graaf Mahoney S, Zimmerman T S. Localization of the binding regions of a murine monoclonal anti-factor VIII antibody and a human anti-factor VIII alloantibody, both of which inhibit factor VIII procoagulant activity, to amino acid residues threonine351-serine365 of the factor VIII heavy chain.  J Clin Invest. 1988;  82(1) 123-128
  • 38 Lapan K A, Fay P J. Localization of a factor X interactive site in the A1 subunit of factor VIIIa.  J Biol Chem. 1997;  272(4) 2082-2088
  • 39 Raut S, Villard S, Grailly S et al.. Anti-heavy-chain monoclonal antibodies directed to the acidic regions of the factor VIII molecule inhibit the binding of factor VIII to phospholipids and von Willebrand factor.  Thromb Haemost. 2003;  90(3) 385-397
  • 40 Barrow R T, Healey J F, Gailani D, Scandella D, Lollar P. Reduction of the antigenicity of factor VIII toward complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules.  Blood. 2000;  95(2) 564-568
  • 41 Jacquemin M, Benhida A, Peerlinck K et al.. A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor.  Blood. 2000;  95(1) 156-163
  • 42 Takeshima K, Smith C, Tait J, Fujikawa K. The preparation and phospholipid binding property of the C2 domain of human factor VIII.  Thromb Haemost. 2003;  89(5) 788-794
  • 43 Hsu T C, Pratt K P, Thompson A R. The factor VIII C1 domain contributes to platelet binding.  Blood. 2008;  111(1) 200-208
  • 44 Lacroix-Desmazes S, Bayry J, Misra N et al.. The prevalence of proteolytic antibodies against factor VIII in hemophilia A.  N Engl J Med. 2002;  346(9) 662-667
  • 45 Lacroix-Desmazes S, Wootla B, Dasgupta S et al.. Catalytic IgG from patients with hemophilia A inactivate therapeutic factor VIII.  J Immunol. 2006;  177(2) 1355-1363
  • 46 Wootla B, Mahendra A, Dimitrov J D et al.. Factor VIII-hydrolyzing IgG in acquired and congenital hemophilia.  FEBS Lett. 2009;  583(15) 2565-2572
  • 47 Gilles J G, Jacquemin M G, Saint-Remy J M. Factor VIII inhibitors.  Thromb Haemost. 1997;  78(1) 641-646
  • 48 Lavigne-Lissalde G, Lacroix-Desmazes S, Wootla B et al.. Molecular characterization of human B domain-specific anti-factor VIII monoclonal antibodies generated in transgenic mice.  Thromb Haemost. 2007;  98(1) 138-147
  • 49 Fulcher C A, de Graaf Mahoney S, Roberts J R, Kasper C K, Zimmerman T S. Localization of human factor FVIII inhibitor epitopes to two polypeptide fragments.  Proc Natl Acad Sci U S A. 1985;  82(22) 7728-7732
  • 50 Scandella D, De Graaf Mahoney S, Mattingly M, Roeder D, Timmons L, Fulcher C A. Epitope mapping of human factor VIII inhibitor antibodies by deletion analysis of factor VIII fragments expressed in Escherichia coli. .  Proc Natl Acad Sci U S A. 1988;  85(16) 6152-6156
  • 51 Scandella D, Mattingly M, de Graaf S, Fulcher C A. Localization of epitopes for human factor VIII inhibitor antibodies by immunoblotting and antibody neutralization.  Blood. 1989;  74(5) 1618-1626
  • 52 Koshihara K, Qian J, Lollar P, Hoyer L W. Immunoblot cross-reactivity of factor VIII inhibitors with porcine factor VIII.  Blood. 1995;  86(6) 2183-2190
  • 53 Healey J F, Parker E T, Barrow R T, Langley T J, Church W R, Lollar P. The comparative immunogenicity of human and porcine factor VIII in haemophilia A mice.  Thromb Haemost. 2009;  102(1) 35-41
  • 54 Frank R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications.  J Immunol Methods. 2002;  267(1) 13-26
  • 55 Albert T, Lange S, Oldenburg J et al.. Characterization of factor VIII antibody epitopes from haemophilia A patients using cellulose bound FVIII peptide libraries [in German].  Hamostaseologie. 2003;  23(1) 13-17
  • 56 Albert T, Egler C, Jakuschev S et al.. The B-cell epitope of the monoclonal anti-factor VIII antibody ESH8 characterized by peptide array analysis.  Thromb Haemost. 2008;  99(3) 634-637
  • 57 Kopecky E M, Greinstetter S, Pabinger I, Buchacher A, Römisch J, Jungbauer A. Mapping of FVIII inhibitor epitopes using cellulose-bound synthetic peptide arrays.  J Immunol Methods. 2006;  308(1–2) 90-100
  • 58 Smith G P, Petrenko V A. Phage display.  Chem Rev. 1997;  97(2) 391-410
  • 59 Villard S, Piquer D, Raut S, Léonetti J P, Saint-Remy J M, Granier C. Low molecular weight peptides restore the procoagulant activity of factor VIII in the presence of the potent inhibitor antibody ESH8.  J Biol Chem. 2002;  277(30) 27232-27239
  • 60 Villard S, Lacroix-Desmazes S, Kieber-Emmons T et al.. Peptide decoys selected by phage display block in vitro and in vivo activity of a human anti-FVIII inhibitor.  Blood. 2003;  102(3) 949-952
  • 61 Kessel C, Königs C, Linde R et al.. Humoral immune responsiveness to a defined epitope on factor VIII before and after B cell ablation with rituximab.  Mol Immunol. 2008;  46(1) 8-15
  • 62 Kessel C, Kreuz W, Klich K et al.. Multimerization of peptide mimotopes for blocking of factor VIII neutralizing antibodies.  ChemMedChem. 2009;  4(8) 1364-1370
  • 63 Martin P G, Sukhu K, Chambers E, Giangrande P L. Evaluation of a novel ELISA screening test for detection of factor VIII inhibitory antibodies in haemophiliacs.  Clin Lab Haematol. 1999;  21(2) 125-128
  • 64 Shetty S, Ghosh K, Mohanty D. An ELISA assay for the detection of factor VIII antibodies—comparison with the conventional Bethesda assay in a large cohort of haemophilia samples.  Acta Haematol. 2003;  109(1) 18-22
  • 65 Fulton R J, McDade R L, Smith P L, Kienker L J, Kettman Jr J R. Advanced multiplexed analysis with the FlowMetrix system.  Clin Chem. 1997;  43(9) 1749-1756
  • 66 Lavigne-Lissalde G, Tarrade C, Lapalud P et al.. Simultaneous detection and epitope mapping of anti-factor VIII antibodies.  Thromb Haemost. 2008;  99(6) 1090-1096
  • 67 FEIBA VH .Anti-inhibitor coagulant complex [package insert]. Westlake Village, CA; Baxter Healthcare Corp 2005
  • 68 Turecek P L, Váradi K, Gritsch H, Schwarz H P. FEIBA: mode of action.  Haemophilia. 2004;  10(Suppl 2) 3-9
  • 69 Negrier C, Dargaud Y, Bordet J C. Basic aspects of bypassing agents.  Haemophilia. 2006;  12(suppl 6) 48-52 discussion 52-53
  • 70 Váradi K, Negrier C, Berntorp E et al.. Monitoring the bioavailability of FEIBA with a thrombin generation assay.  J Thromb Haemost. 2003;  1(11) 2374-2380
  • 71 Hoffman M, Monroe III D M. The action of high-dose factor VIIa (FVIIa) in a cell-based model of hemostasis.  Semin Hematol. 2001;  38(4, Suppl 12) 6-9
  • 72 Hedner U. Mechanism of action of recombinant activated factor VII: an update.  Semin Hematol. 2006;  43(Suppl 1) S105-S107
  • 73 Roberts H R, Monroe D M, White G C. The use of recombinant factor VIIa in the treatment of bleeding disorders.  Blood. 2004;  104(13) 3858-3864
  • 74 Lindley C M, Sawyer W T, Macik B G et al.. Pharmacokinetics and pharmacodynamics of recombinant factor VIIa.  Clin Pharmacol Ther. 1994;  55(6) 638-648
  • 75 Fridberg M J, Hedner U, Roberts H R, Erhardtsen E. A study of the pharmacokinetics and safety of recombinant activated factor VII in healthy Caucasian and Japanese subjects.  Blood Coagul Fibrinolysis. 2005;  16(4) 259-266
  • 76 Villar A, Aronis S, Morfini M et al.. Pharmacokinetics of activated recombinant coagulation factor VII (NovoSeven) in children vs. adults with haemophilia A.  Haemophilia. 2004;  10(4) 352-359
  • 77 Shapiro A D, Gilchrist G S, Hoots W K, Cooper H A, Gastineau D A. Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery.  Thromb Haemost. 1998;  80(5) 773-778
  • 78 Key N S, Aledort L M, Beardsley D et al.. Home treatment of mild to moderate bleeding episodes using recombinant factor VIIa (NovoSeven) in haemophiliacs with inhibitors.  Thromb Haemost. 1998;  80(6) 912-918
  • 79 Lloyd Jones M, Wight J, Paisley S, Knight C. Control of bleeding in patients with haemophilia A with inhibitors: a systematic review.  Haemophilia. 2003;  9(4) 464-520
  • 80 Santagostino E, Mancuso M E, Rocino A, Mancuso G, Scaraggi F, Mannucci P M. A prospective randomized trial of high and standard dosages of recombinant factor VIIa for treatment of hemarthroses in hemophiliacs with inhibitors.  J Thromb Haemost. 2006;  4(2) 367-371
  • 81 Dimichele D, Négrier C. A retrospective postlicensure survey of FEIBA efficacy and safety.  Haemophilia. 2006;  12(4) 352-362
  • 82 Astermark J, Donfield S M, DiMichele D M FENOC Study Group et al. A randomized comparison of bypassing agents in hemophilia complicated by an inhibitor: the FEIBA NovoSeven Comparative (FENOC) Study.  Blood. 2007;  109(2) 546-551
  • 83 Knight C, Danø A M, Kennedy-Martin T. Systematic review of efficacy of rFVIIa and aPCC treatment for hemophilia patients with inhibitors.  Adv Ther. 2009;  26(1) 68-88
  • 84 Donfield S M, Astermark J, Lail A E, Gilbert S A, Berntorp E. Fenoc Study Group . Value added: increasing the power to assess treatment outcome in joint haemorrhages.  Haemophilia. 2008;  14(2) 276-280
  • 85 Berntorp E. Differential response to bypassing agents complicates treatment in patients with haemophilia and inhibitors.  Haemophilia. 2009;  15(1) 3-10
  • 86 Monroe D M, Hoffman M, Roberts H R. Platelets and thrombin generation.  Arterioscler Thromb Vasc Biol. 2002;  22(9) 1381-1389
  • 87 Sørensen B, Ingerslev J. Whole blood clot formation phenotypes in hemophilia A and rare coagulation disorders. Patterns of response to recombinant factor VIIa.  J Thromb Haemost. 2004;  2(1) 102-110
  • 88 Shetty S, Vora S, Kulkarni B et al.. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients.  Br J Haematol. 2007;  138(4) 541-544
  • 89 Allen G A, Hoffman M, Roberts H R, Monroe D M. Manipulation of prothrombin concentration improves response to high-dose factor VIIa in a cell-based model of haemophilia.  Br J Haematol. 2006;  134(3) 314-319
  • 90 NovoSeven Coagulation Factor VIIa .(recombinant) [package insert]. Princeton, NJ; Novo Nordisk A/S 2006
  • 91 Hedner U. Recombinant factor VIIa (NovoSeven) as a hemostatic agent.  Dis Mon. 2003;  49(1) 39-48
  • 92 Allen G A, Persson E, Campbell R A, Ezban M, Hedner U, Wolberg A S. A variant of recombinant factor VIIa with enhanced procoagulant and antifibrinolytic activities in an in vitro model of hemophilia.  Arterioscler Thromb Vasc Biol. 2007;  27(3) 683-689
  • 93 Sørensen B, Persson E, Ingerslev J. Factor VIIa analogue (V158D/E296V/M298Q-FVIIa) normalises clot formation in whole blood from patients with severe haemophilia A.  Br J Haematol. 2007;  137(2) 158-165
  • 94 Holmberg H L, Lauritzen B, Tranholm M, Ezban M. Faster onset of effect and greater efficacy of NN1731 compared with rFVIIa, aPCC and FVIII in tail bleeding in hemophilic mice.  J Thromb Haemost. 2009;  7(9) 1517-1522
  • 95 Møss J, Scharling B, Ezban M, Møller Sørensen T. Evaluation of the safety and pharmacokinetics of a fast-acting recombinant FVIIa analogue, NN1731, in healthy male subjects.  J Thromb Haemost. 2009;  7(2) 299-305
  • 96 Stennicke H R, Ostergaard H, Bayer R J et al.. Generation and biochemical characterization of glycoPEGylated factor VIIa derivatives.  Thromb Haemost. 2008;  100(5) 920-928
  • 97 Palm L, Jepsen T, Garmer S F et al.. Analysis and characterization of glycopegylated recombinant human FVIIA.  J Thromb Haemost. 2009;  7(suppl 2) , Abstract PP-WE-585
  • 98 Sorensen B, Karpf D, Groth A V et al.. Effect of glycopegylation on the pharmacokinetic properties of FVIIa.  J Thromb Haemost. 2007;  5 (suppl 2) P-T-012
  • 99 Yatuv R, Dayan I, Carmel-Goren L et al.. Enhancement of factor VIIa haemostatic efficacy by formulation with PEGylated liposomes.  Haemophilia. 2008;  14(3) 476-483
  • 100 Weimer T, Wormsbächer W, Kronthaler U, Lang W, Liebing U, Schulte S. Prolonged in-vivo half-life of factor VIIa by fusion to albumin.  Thromb Haemost. 2008;  99(4) 659-667
  • 101 Kronthaler U, Schmidbauer S, Liebing U et al.. Prolonged half-life of recombinant factor VIIA fusion protein—single dose study in rabbits.  J Thromb Haemost. 2009;  7(Suppl 2) , Abstract PP-TH-561
  • 102 Pan J, Kim J, Zhu D et al.. Binding to activated platelets and enhanced clotting properties of the recombinant FVIIa analogue Bay7.  J Thromb Haemost. 2009;  7(suppl 2) , Abstract OC-WE-059
  • 103 Liu T, Zhang X, Pan J et al.. Enhanced and prolonged efficacy of a novel recombinant FVIIa variant (BAY86–6150) for acute and prophylactic treatments in hemophilia A (HemA) mice.  J Thromb Haemost. 2009;  7(Suppl 2) , Abstract OC-WE-057
  • 104 Doering C B, Healey J F, Parker E T, Barrow R T, Lollar P. High level expression of recombinant porcine coagulation factor VIII.  J Biol Chem. 2002;  277(41) 38345-38349
  • 105 Teitel J, Berntorp E, Collins P et al.. A systematic approach to controlling problem bleeds in patients with severe congenital haemophilia A and high-titre inhibitors.  Haemophilia. 2007;  13(3) 256-263
  • 106 Kenet G, Lubetsky A, Luboshitz J, Martinowitz U. A new approach to treatment of bleeding episodes in young hemophilia patients: a single bolus megadose of recombinant activated factor VII (NovoSeven).  J Thromb Haemost. 2003;  1(3) 450-455
  • 107 Parameswaran R, Shapiro A D, Gill J C, Kessler C M. HTRS Registry Investigators . Dose effect and efficacy of rFVIIa in the treatment of haemophilia patients with inhibitors: analysis from the Hemophilia and Thrombosis Research Society Registry.  Haemophilia. 2005;  11(2) 100-106
  • 108 Kavakli K, Makris M, Zulfikar B, Erhardtsen E, Abrams Z S, Kenet G. NovoSeven trial (F7HAEM-1510) investigators . Home treatment of haemarthroses using a single dose regimen of recombinant activated factor VII in patients with haemophilia and inhibitors. A multi-centre, randomised, double-blind, cross-over trial.  Thromb Haemost. 2006;  95(4) 600-605
  • 109 Lee D, Yoon B S, Spotts G, Ewenstein B M. Assessment of thrombotic adverse events (TAES) with activated prothrombin complex concentrates (APCCS): 17 year experience.  J Thromb Haemost. 2007;  5(Suppl 2) P-T-157
  • 110 Allen G A, Hoffman M, Roberts H R, Monroe D M. Manipulation of prothrombin concentration improves response to high-dose factor VIIa in a cell-based model of haemophilia.  Br J Haematol. 2006;  134(3) 314-319
  • 111 Schneiderman J, Rubin E, Nugent D J, Young G. Sequential therapy with activated prothrombin complex concentrates and recombinant FVIIa in patients with severe haemophilia and inhibitors: update of our previous experience.  Haemophilia. 2007;  13(3) 244-248
  • 112 Ng H J, Loh S M, Tan D C, Lee L H. Thrombosis associated with the use of recombinant activated factor VII: profiling two events.  Thromb Haemost. 2004;  92(6) 1448-1449
  • 113 Sørensen B, Johansen P, Christiansen K, Woelke M, Ingerslev J. Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation.  J Thromb Haemost. 2003;  1(3) 551-558
  • 114 Sørensen B, Ingerslev J. Tailoring haemostatic treatment to patient requirements—an update on monitoring haemostatic response using thrombelastography.  Haemophilia. 2005;  11(Suppl 1) 1-6
  • 115 Ingerslev J, Poulsen L H, Sørensen B. Potential role of the dynamic properties of whole blood coagulation in assessment of dosage requirements in haemophilia.  Haemophilia. 2003;  9(4) 348-352
  • 116 Hayashi T, Tanaka I, Shima M et al.. Unresponsiveness to factor VIII inhibitor bypassing agents during haemostatic treatment for life-threatening massive bleeding in a patient with haemophilia A and a high responding inhibitor.  Haemophilia. 2004;  10(4) 397-400
  • 117 Young G, Blain R, Nakagawa P, Nugent D J. Individualization of bypassing agent treatment for haemophilic patients with inhibitors utilizing thromboelastography.  Haemophilia. 2006;  12(6) 598-604
  • 118 Hemker H C, Giesen P, Al Dieri R et al.. Calibrated automated thrombin generation measurement in clotting plasma.  Pathophysiol Haemost Thromb. 2003;  33(1) 4-15
  • 119 Dargaud Y, Béguin S, Lienhart A et al.. Evaluation of thrombin generating capacity in plasma from patients with haemophilia A and B.  Thromb Haemost. 2005;  93(3) 475-480
  • 120 Váradi K, Negrier C, Berntorp E et al.. Monitoring the bioavailability of FEIBA with a thrombin generation assay.  J Thromb Haemost. 2003;  1(11) 2374-2380
  • 121 Dargaud Y, Lienhart A, Negrier C. Monitoring of recombinant FVIIa by thrombin generation test.  J Thromb Haemost. 2007;  5(Suppl 2) P-M-176
  • 122 Dargaud Y, Lienhart A, Meunier S et al.. Major surgery in a severe haemophilia A patient with high titre inhibitor: use of the thrombin generation test in the therapeutic decision.  Haemophilia. 2005;  11(5) 552-558

Natalya M AnanyevaPh.D. 

Laboratory of Hemostasis, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research

Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20852

Email: Natalya.Ananyeva@fda.hhs.gov

    >