Neuropediatrics 2009; 40(4): 179-185
DOI: 10.1055/s-0029-1243175
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Hypoxia-Ischemia Brain Damage Disrupts Brain Cholesterol Homeostasis in Neonatal Rats

Z. Yu1 , S. Li1 , S. H. Lv1 , H. Piao1 , Y. H. Zhang1 , Y. M. Zhang1 , H. Ma2 , J. Zhang2 , C. K. Sun2 , A. P. Li1
  • 1Department of Physiology, Dalian Medical University, Dalian, People's Republic of China
  • 2Institute for Brain Disorders, Dalian Medical University, Dalian, People's Republic of China
Further Information

Publication History

received 31.07.2009

accepted 13.10.2009

Publication Date:
09 February 2010 (online)


Purpose:The first 3 weeks of life is the peak time of oligodendrocytes development and also the critical period of cholesterol increasing dramatically in central nervous system in rats. Neonatal hypoxia-ischemia (HI) brain damage happening in this period may disturb the brain cholesterol balance as well as white matter development.

Materials and Methods:To test this hypothesis, postnatal day 7 (P7) Sprague-Dawley rats were subjected to HI insult. Cholesterol concentrations from brain and plasma were measured. White matter integrity was evaluated by densitometric analysis of myelin basic protein (MBP) immunostaining and electron microscopy. Brain TNF-α and IL-6 levels were also measured.

Results:HI-induced brain cholesterol, but not the plasma cholesterol, levels decreased significantly during the first three days after HI compared with naïve and sham operated rats (p<0.05). Obvious hypomyelination was indicated by marked reductions in MBP immunostaining on both P10 and P14 (p<0.01) and less and thinner myelinated axons were detected on P21 by electron microscopy observation. High expressions of brain TNF-α and IL-6 12 h after HI (p<0.05) were also observed.

Discussion:The present work provides evidence that HI insult destroyed brain cholesterol homeostasis, which might be important in the molecular pathology of hypoxic-ischemic white matter injury. Proinflammatory cytokines insulting oligodendrocytes, may cause cholesterol unbalance. Furthermore, specific therapeutic interventions to maintain brain cholesterol balance may be effective for the recovery of white matter function.



A. P. Li, MD 

Department of Physiology

Dalian Medical University

No.9 West Section

Lushun South Road


People's Republic of China

Phone: +86/411/86 11 02 88