Klinische Neurophysiologie 2009; 40(4): 239-247
DOI: 10.1055/s-0029-1242733
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Funktionelle Bildgebung und Neuromodulation: Effekte der transkraniellen Magnetstimulation auf kortikale Netzwerke bei Gesunden und Patienten

Functional Neuroimaging and Neuromodulation: Effects of Transcranial Magnetic Stimulation on Cortical Networks in Healthy Subjects and PatientsC. Grefkes1 , 2 , G. R. Fink2 , 3
  • 1Neuromodulation & Neurorehabilitation, Max-Planck-Institut für neurologische Forschung, Köln
  • 2Klinik und Poliklinik für Neurologie, Uniklinik Köln
  • 3Institut für Neurowissenschaften und Medizin – Kognitive Neurologie (INM3), Forschungszentrum Jülich
Further Information

Publication History

Publication Date:
28 December 2009 (online)

Zusammenfassung

Technische Stimulationsverfahren können zerebrale Netzwerke modulieren und Änderungen auf Verhaltensebene auslösen. Beim Menschen ist insbesondere die transkranielle Magnetstimulation (TMS) ein interessantes Verfahren, um über eine fokale Stimulation der Hirnrinde ein ganzes Netzwerk zu beeinflussen. Hierbei erlauben nicht-invasive bildgebende Verfahren wie die Positronen-Emissionstomografie (PET) oder die funktionelle Magnetresonanztomografie, die Effekte einer TMS auf neuronale Netzwerke in vivo zu untersuchen. In diesem Übersichtsartikel präsentieren und diskutieren wir funktionelle Bildgebungsstudien, in denen die neuralen Effekte der TMS unter physiologischen sowie pathologischen Bedingungen untersucht worden sind. Es zeigt sich, dass eine fokale TMS mit metabolischen Änderungen in nicht nur der stimulierten Region, sondern auch in damit verbundenen Arealen einhergeht. Diese Netzwerk-Effekte der TMS sind abhängig von der Stimulationsfrequenz und vom Stimulationsort. Insbesondere repetitive TMS-Protokolle können zur gezielten Modifikation pathologischer Netzwerk-Zustände genutzt werden. Hier ermöglichen bildgebende Verfahren einen wichtigen Einblick in den individuellen Zustand eines Netzwerks von Arealen, sodass Vorhersagen über das mögliche Ansprechen auf eine TMS-Intervention getroffen werden können. Hierbei sind sowohl das Aktivitätsniveau der geschädigten als auch der nicht-geschädigten Hemisphäre bedeutsam für den Interventionseffekt. Daher könnte zukünftig die funktionelle Bildgebung eine Entscheidungsgrundlage für eine individualisierte Therapiestrategie zur Behandlung neurologischer Defizite darstellen.

Abstract

Technical stimulation approaches offer great potential to modulate cerebral networks, thereby modifying behaviour. An interesting non-invasive approach to focally interfere with cortical networks is provided by transcranial magnetic stimulation (TMS). Functional neuroimaging techniques such as positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) allow us to gain insights into the effects of TMS on neuronal circuits. Here we review recent papers on PET and fMRI studies investigating the neural effects of TMS under physiological and pathological conditions. We discuss data showing that focally applied TMS does not only regionally interfere with the cortex directly stimulated but also with remote and interconnected areas. The network effects of TMS are dependent on the stimulation frequency and location. Repetitive TMS protocols enable a distinct interference with pathological states of cerebral networks. Functional neuroimaging may serve as a surrogate marker to predict responses to a specific TMS-intervention protocol depending on neural activity levels in the affected or unaffected hemisphere. In the future such a combined approach may enable individualised treatment regimes to support recovery of function in patients suffering from neurological deficits.

Literatur

  • 1 Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. East Norwalk, CT: Appleton & Lange 1991
  • 2 Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.  J Physiol. 1973;  232 331-356
  • 3 Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches.  Neuron. 2004;  44 5-21
  • 4 Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD.  Curr Opin Neurobiol. 1994;  4 389-399
  • 5 Malenka RC, Lancaster B, Zucker RS. Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation.  Neuron. 1992;  9 121-128
  • 6 Peineau S, Nicolas CS, Bortolotto ZA. et al . A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases.  Mol Brain. 2009;  2 22
  • 7 Fritsch G, Hitzig E. Über die elektrische Erregbarkeit des Großhirns.  Archiv für Anatomie und Physiologie. 1870;  37 300-332
  • 8 Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject.  Nature. 1980;  285 227
  • 9 Sparing R, Mottaghy FM. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction.  Methods. 2008;  44 329-337
  • 10 Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex.  Lancet. 1985;  1 1106-1107
  • 11 Rothwell J. Transcranial magnetic stimulation.  Brain. 1998;  121 ((Pt 3)) 397-398
  • 12 Fox PT, Narayana S, Tandon N. et al . Column-based model of electric field excitation of cerebral cortex.  Hum Brain Mapp. 2004;  22 1-14
  • 13 Huang YZ, Edwards MJ, Rounis E. et al . Theta burst stimulation of the human motor cortex.  Neuron. 2005;  45 201-206
  • 14 Nyffeler T, Wurtz P, Luscher HR. et al . Extending lifetime of plastic changes in the human brain.  Eur J Neurosci. 2006;  24 2961-2966
  • 15 Frey U, Morris RG. Synaptic tagging and long-term potentiation.  Nature. 1997;  385 533-536
  • 16 Logothetis NK. What we can do and what we cannot do with fMRI.  Nature. 2008;  453 869-878
  • 17 Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism.  Magn Reson Imaging. 2004;  22 1517-1531
  • 18 Siebner H, Peller M, Bartenstein P. et al . Activation of frontal premotor areas during suprathreshold transcranial magnetic stimulation of the left primary sensorimotor cortex: a glucose metabolic PET study.  Hum Brain Mapp. 2001;  12 157-167
  • 19 Bestmann S, Swayne O, Blankenburg F. et al . Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex.  Cereb Cortex. 2008;  18 1281-1291
  • 20 Moisa M, Pohmann R, Ewald L. et al . New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study.  J Magn Reson Imaging. 2009;  29 189-197
  • 21 Bestmann S, Baudewig J, Siebner HR. et al . Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits.  Eur J Neurosci. 2004;  19 1950-1962
  • 22 Bestmann S, Siebner HR, Modugno N. et al . Inhibitory interactions between pairs of subthreshold conditioning stimuli in the human motor cortex.  Clin Neurophysiol. 2004;  115 755-764
  • 23 Fox P. et al . Imaging human intra-cerebral connectivity by PET during TMS.  Neuroreport. 1997;  8 2787-2791
  • 24 Chouinard PA, Van Der Werf YD, Leonard G. et al . Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices.  J Neurophysiol. 2003;  90 1071-1083
  • 25 Friston KJ, Buechel C, Fink GR. et al . Psychophysiological and modulatory interactions in neuroimaging.  Neuroimage. 1997;  6 218-229
  • 26 Grefkes C, Wang LE, Eickhoff SB. et al . Noradrenergic Modulation of Cortical Networks Engaged in Visuomotor Processing.  Cereb Cortex. 2009;  epub ahead of print 
  • 27 Lee L, Siebner HR, Rowe JB. et al . Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation.  J Neurosci. 2003;  23 5308-5318
  • 28 Rounis E, Lee L, Siebner HR. et al . Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex.  Neuroimage. 2005;  26 164-176
  • 29 Bestmann S, Baudewig J, Frahm J. On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging.  J Magn Reson Imaging. 2003;  17 309-316
  • 30 Yoo WK, You SH, Ko MH. et al . High frequency rTMS modulation of the sensorimotor networks: behavioral changes and fMRI correlates.  Neuroimage. 2008;  39 1886-1895
  • 31 Rushworth MFS, Nixon PD, Passingham RE. Parietal cortex and movement I Movement selection and reaching.  Exp Brain Res. 1997;  117 292-310
  • 32 Grefkes C, Ritzl A, Zilles K. et al . Human medial intraparietal cortex subserves visuomotor coordinate transformation.  Neuroimage. 2004;  23 1494-1506
  • 33 Grefkes C, Fink GR. The functional organization of the intraparietal sulcus in humans and monkeys.  J Anat. 2005;  207 3-17
  • 34 Tegenthoff M, Ragert P, Pleger B. et al . Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS.  PLoS Biol. 2005;  3 e362
  • 35 Bodegard A, Geyer S, Herath P. et al . Somatosensory areas engaged during discrimination of steady pressure, spring strength, and kinesthesia.  Hum Brain Mapp. 2003;  20 103-115
  • 36 Young JP, Geyer S, Grefkes C. et al . Regional cerebral blood flow correlations of somatosensory areas 3a, 3b, 1, and 2 in humans during rest: a PET and cytoarchitectural study.  Hum Brain Mapp. 2003;  19 183-196
  • 37 Grefkes C, Fink GR. Somatosensorisches System. In: Funktionelle MRT in Psychiatrie und Neurologie. 1. Auflage, Berlin: Springer 2006: 279-296
  • 38 Pleger B, Blankenburg F, Bestmann S. et al . Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans.  J Neurosci. 2006;  26 1945-1952
  • 39 Koesler IB, Dafotakis M, Ameli M. et al . Electrical somatosensory stimulation improves movement kinematics of the affected hand following stroke.  J Neurol Neurosurg Psychiatry. 2009;  80 614-619
  • 40 Koesler IB, Dafotakis M, Ameli M. et al . Electrical somatosensory stimulation modulates hand motor function in healthy humans.  J Neurol. 2008;  255 1567-1573
  • 41 Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?.  Lancet Neurol. 2006;  5 708-712
  • 42 Nowak DA, Grefkes C, Fink GR. Modern neurophysiological strategies in the rehabilitation of impaired hand function following stroke.  Fortschr Neurol Psychiatr. 2008;  76 354-360
  • 43 Nowak DA, Grefkes C, Ameli M. et al . Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand.  Neurorehabil Neural Repair. 2009;  23 641-656
  • 44 Grefkes C, Fink GR. Functional reorganisation and neuromodulation. In: Sensorimotor Control of Grasping: Physiology and Pathophysiology. 1. Auflage, Cambridge University Press 2009: 425-438
  • 45 Chollet F, DiPiero V, Wise RJ. et al . The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography.  Ann Neurol. 1991;  29 63-71
  • 46 Weiller C. et al . Functional reorganization of the brain in recovery from striatocapsular infarction in man.  Ann Neurol. 1992;  31 463-472
  • 47 Ward NS, Brown MM, Thompson AJ. et al . Neural correlates of motor recovery after stroke: a longitudinal fMRI study.  Brain. 2003;  126 2476-2496
  • 48 Grefkes C, Nowak DA, Eickhoff SB. et al . Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging.  Ann Neurol. 2008;  63 236-246
  • 49 Ward NS, Newton JM, Swayne OB. et al . The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke.  Eur J Neurosci. 2007;  25 1865-1873
  • 50 Schaechter JD, Perdue KL, Wang R. Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients.  Neuroimage. 2008;  39 1370-1382
  • 51 Johansen-Berg H, Rushworth MF, Bogdanovic MD. et al . The role of ipsilateral premotor cortex in hand movement after stroke.  Proc Natl Acad Sci USA. 2002;  99 14518-14523
  • 52 Murase N, Duque J, Mazzocchio R. et al . Influence of interhemispheric interactions on motor function in chronic stroke.  Ann Neurol. 2004;  55 400-409
  • 53 Kobayashi M, Hutchinson S, Theoret H. et al . Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements.  Neurology. 2004;  62 91-98
  • 54 Dafotakis M, Grefkes C, Wang L. et al . The effects of 1 Hz rTMS over the hand area of M1 on movement kinematics of the ipsilateral hand.  J Neural Transm. 2008; 
  • 55 Conchou F, Loubinoux I, Castel-Lacanal E. et al . Neural substrates of low-frequency repetitive transcranial magnetic stimulation during movement in healthy subjects and acute stroke patients A PET study.  Hum Brain Mapp. 2009;  30 2542-2557
  • 56 Takeuchi N, Chuma T, Matsuo Y. et al . Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke.  Stroke. 2005;  36 2681-2686
  • 57 Mansur CG, Fregni F, Boggio PS. et al . A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients.  Neurology. 2005;  64 1802-1804
  • 58 Fregni F, Boggio PS, Valle AC. et al . A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients.  Stroke. 2006;  37 2115-2122
  • 59 Nowak DA, Grefkes C, Dafotakis M. et al . Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.  Arch Neurol. 2008;  65 741-747
  • 60 Rouiller EM. et al . Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys.  Exp.Brain Res.. 1994;  102 227-243
  • 61 Nyffeler T, Cazzoli D, Hess CW. et al . One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect.  Stroke. 2009;  40 2791-2796
  • 62 Sparing R, Thimm M, Hesse MD. et al . Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation.  Brain. 2009;  epub ahead of print 
  • 63 Khedr EM, Ahmed MA, Fathy N. et al . Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.  Neurology. 2005;  65 466-468
  • 64 Kim YH, You SH, Ko MH. et al . Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke.  Stroke. 2006;  37 1471-1476
  • 65 Ameli M. et al . Differential effects of high-frequency rTMS over ipsilesional primary motor cortex in cortical and subcortical MCA stroke.  Ann Neurol. 2009;  DOI:10.1002/ana.21725 
  • 66 Ziemann U. Pharmacology of TMS.  Suppl Clin Neurophysiol. 2003;  56 226-231
  • 67 Weber R, Ramos-Cabrer P, Justicia C. et al . Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats.  J Neurosci. 2008;  28 1022-1029
  • 68 Hummel FC, Voller B, Celnik P. et al . Effects of brain polarization on reaction times and pinch force in chronic stroke.  BMC Neurosci. 2006;  7 73
  • 69 Floel A, Rosser N, Michka O. et al . Noninvasive brain stimulation improves language learning.  J Cogn Neurosci. 2008;  20 1415-1422
  • 70 Loubinoux I, Pariente J, Boulanouar K. et al . A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: double-blind, placebo-controlled, fMRI study in healthy subjects.  Neuroimage. 2002;  15 26-36
  • 71 Wang LE, Fink GR, Dafotakis M. et al . Noradrenergic stimulation and motor performance: differential effects of reboxetine on movement kinematics and visuomotor abilities in healthy human subjects.  Neuropsychologia. 2009;  47 1302-1312
  • 72 Vossel S, Kukolja J, Thimm M. et al . The effect of nicotine on visuospatial attention in chronic spatial neglect depends upon lesion location.  J Psychopharmacol. 2009;  epub ahead of print 
  • 73 Thimm M, Fink GR, Kust J. et al . Impact of alertness training on spatial neglect: a behavioural and fMRI study.  Neuropsychologia. 2006;  44 1230-1246
  • 74 Thimm M, Fink GR, Kust J. et al . Recovery from hemineglect: differential neurobiological effects of optokinetic stimulation and alertness training.  Cortex. 2009;  45 850-862
  • 75 Hamzei F, Dettmers C, Rijntjes M. et al . The effect of cortico-spinal tract damage on primary sensorimotor cortex activation after rehabilitation therapy.  Exp Brain Res. 2008;  190 329-336
  • 76 Kauer JA, Malenka RC. Synaptic plasticity and addiction.  Nat Rev Neurosci. 2007;  8 844-858
  • 77 Luscher C, Nicoll RA, Malenka RC. et al . Synaptic plasticity and dynamic modulation of the postsynaptic membrane.  Nat Neurosci. 2000;  3 545-550
  • 78 Bestmann S, Ruff CC, Blankenburg F. et al . Mapping causal interregional influences with concurrent TMS-fMRI.  Exp Brain Res. 2008;  191 383-402

Korrespondenzadresse

Dr. med. C. Grefkes

Klinik und Poliklinik für Neurologie

Uniklinik Köln

Kerpener Straße 62

50937 Köln

Email: christian.grefkes@uk-koeln.de

    >