Semin Neurol 2009; 29(5): 520-527
DOI: 10.1055/s-0029-1241038
© Thieme Medical Publishers

Mal de Debarquement

Yoon-Hee Cha1
  • 1Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
15. Oktober 2009 (online)

ABSTRACT

Mal de debarquement (MdD), the “sickness of disembarkment,” occurs when habituation to background rhythmic movement becomes resistant to readaption to stable conditions and results in a phantom perception of self motion typically described as rocking, bobbing, or swaying. Although several studies have shown that brief periods of MdD are common in healthy individuals, this otherwise natural phenomenon can become persistent in some individuals and lead to severe balance problems. Increased recognition of MdD in a persistent pathological form occurred after the publication of a case series of six patients by Brown and Baloh in 1987. Over 20 years later, although more is known about the clinical syndrome of persistent MdD, little is known about what leads to this persistence. This review addresses the clinical features of MdD, the associated symptoms in the persistent form, theories on pathogenesis, experience with treatment, and future directions for research.

REFERENCES

  • 1 Irwin J A. The pathology of seasickness.  Lancet. 1881;  2 907-909
  • 2 Brown J J, Baloh R W. Persistent mal de debarquement syndrome: a motion-induced subjective disorder of balance.  Am J Otolaryngol. 1987;  8(4) 219-222
  • 3 Cha Y H, Brodsky J, Ishiyama G, Sabatti C, Baloh R W. Clinical symptoms and associated syndromes of mal de debarquement.  J Neurol. 2008;  255 1038-1044
  • 4 Hain T C, Hanna P A, Rheinberger M A. Mal de debarquement.  Arch Otolaryngol Head Neck Surg. 1999;  125(6) 615-620
  • 5 Mair I WS. The mal de debarquement syndrome.  J Audiol Med. 1996;  5 21-25
  • 6 Murphy T P. Mal de debarquement syndrome: a forgotten entity?.  Otolaryngol Head Neck Surg. 1993;  109(1) 10-13
  • 7 Gordon C R, Spitzer O, Shupak A, Doweck I. Survey of mal de debarquement.  BMJ. 1992;  304(6826) 544
  • 8 Gordon C R, Spitzer O, Doweck I, Melamed Y, Shupak A. Clinical features of mal de debarquement: adaptation and habituation to sea conditions.  J Vestib Res. 1995;  5(5) 363-369
  • 9 Cohen H. Vertigo after sailing a nineteenth century ship.  J Vestib Res. 1996;  6(1) 31-35
  • 10 DeFlorio P T, Silbergleit R. Mal de debarquement presenting in the emergency department.  J Emerg Med. 2006;  31(4) 377-379
  • 11 Lewis R F. Frequency-specific mal de debarquement.  Neurology. 2004;  63(10) 1983-1984
  • 12 Chan G, Moochhala S M, Zhao B, Wl Y, Wong J. A comparison of motion sickness prevalence between seafarers and non-seafarers onboard naval platforms.  Int Marit Health. 2006;  57(1-4) 56-65
  • 13 Lawther A, Griffin M J. A survey of the occurrence of motion sickness amongst passengers at sea.  Aviat Space Environ Med. 1988;  59(5) 399-406
  • 14 Turner M, Griffin M J. Motion sickness in public road transport: passenger behavior and susceptibility.  Ergonomics. 1999;  42(3) 444-461
  • 15 Dobie T, McBride D, Dobie Jr T J, May J. The effects of age and sex on susceptibility to motion sickness.  Aviat Space Environ Med. 2001;  72(1) 13-20
  • 16 Golding J F. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness.  Brain Res Bull. 1998;  47(5) 507-516
  • 17 Golding J F. Motion sickness susceptibility.  AutonNeurosci. 2006;  129 67-76
  • 18 Kennedy R S, Graybiel A, McDonough R C, Beckwith F D. Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinthine defects.  Acta Otolaryngol. 1968;  66(6) 533-540
  • 19 Johnson W H, Sunahara F A, Landolt J P. Importance of the vestibular system in visually induced nausea and self-vection.  J Vestib Res. 1999;  9(2) 83-87
  • 20 Drummond P D. Triggers of motion sickness in migraine sufferers.  Headache. 2005;  45(6) 653-656
  • 21 Lestienne F, Soechting J, Berthoz A. Postural readjustments induced by linear motion of visual scenes.  Exp Brain Res. 1977;  28(3-4) 363-384
  • 22 Brandt T, Bartenstein P, Janek A, Dieterich M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex.  Brain. 1998;  121(Pt 9) 1749-1758
  • 23 Brandt T, Marx E, Stephan T, Bense S, Dieterich M. Inhibitory interhemispheric visuovisual interaction in motion perception.  Ann N Y Acad Sci. 2003;  1004 283-288
  • 24 Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M. Sensory system interactions during simultaneous vestibular and visual stimulation in PET.  Hum Brain Mapp. 2002;  16(2) 92-103
  • 25 Lipton R B, Bigal M E, Diamond M, Freitag F, Reed M L, Stewart W F. AMPP Advisory Group . Migraine prevalence, disease burden, and the need for preventive therapy.  Neurology. 2007;  68(5) 343-349
  • 26 Moeller L, Lempert T. Mal de debarquement: pseudo-hallucinations from vestibular memory?.  J Neurol. 2007;  254(6) 813-815
  • 27 Staab J P. Chronic dizziness: the interface between psychiatry and neuro-otology.  Curr Opin Neurol. 2006;  19(1) 41-48
  • 28 Yardley L, Papo D, Bronstein A et al.. Attentional demands of continuously monitoring orientation using vestibular information.  Neuropsychologia. 2002;  40(4) 373-383
  • 29 Graybiel A, Kennedy R S, Knoblock E C et al.. Effects of exposure to a rotating environment (10 rpm) on four aviators for a period of twelve days.  Aerosp Med. 1965;  36 733-754
  • 30 Reason J T. Motion sickness adaptation: a neural mismatch model.  J R Soc Med. 1978;  71(11) 819-829
  • 31 Iwasaki S, McGarvie L A, Halmagyi G M et al.. Head taps evoke a crossed vestibulo-ocular reflex.  Neurology. 2007;  68(15) 1227-1229
  • 32 Welgampola M S, Colebatch J G. Characteristics and clinical applications of vestibular-evoked myogenic potentials.  Neurology. 2005;  64(10) 1682-1688
  • 33 Minor L B. Clinical manifestations of superior semicircular canal dehiscence.  Laryngoscope. 2005;  115(10) 1717-1727
  • 34 Modugno G C, Magnani G, Brandolini C, Savastio G, Pirodda A. Could vestibular evoked myogenic potentials (VEMPs) also be useful in the diagnosis of perilymphatic fistula?.  Eur Arch Otorhinolaryngol. 2006;  263(6) 552-555
  • 35 Brandt T, Dieterich M. The vestibular cortex. Its locations, functions, and disorders.  Ann N Y Acad Sci. 1999;  871 293-312
  • 36 Lobel E, Kleine J F, Bihan D L, Leroy-Willig A, Berthoz A. Functional MRI of galvanic vestibular stimulation.  J Neurophysiol. 1998;  80(5) 2699-2709
  • 37 Lobel E, Kleine J F, Leroy-Willig A et al.. Cortical areas activated by bilateral galvanic vestibular stimulation.  Ann N Y Acad Sci. 1999;  871 313-323
  • 38 Eickhoff S B, Weiss P H, Amunts K, Fink G R, Zilles K. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping.  Hum Brain Mapp. 2006;  27(7) 611-621
  • 39 Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F. Representation of visual gravitational motion in the human vestibular cortex.  Science. 2005;  308(5720) 416-419
  • 40 Gu Y, DeAngelis G C, Angelaki D E. A functional link between area MSTd and heading perception based on vestibular signals.  Nat Neurosci. 2007;  10(8) 1038-1047
  • 41 Takahashi K, Gu Y, May P J, Newlands S D, DeAngelis G C, Angelaki D E. Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity.  J Neurosci. 2007;  27(36) 9742-9756
  • 42 Dumoulin S O, Bittar R G, Kabani N J et al.. A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning.  Cereb Cortex. 2000;  10(5) 454-463
  • 43 O'Keefe J. Place units in the hippocampus of the freely moving rat.  Exp Neurol. 1976;  51(1) 78-109
  • 44 Rolls E T, Miyashita Y, Cahusac P M et al.. Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown.  J Neurosci. 1989;  9(6) 1835-1845
  • 45 O'Mara S M, Rolls E T, Berthoz A, Kesner R P. Neurons responding to whole-body motion in the primate hippocampus.  J Neurosci. 1994;  14(11 Pt 1) 6511-6523
  • 46 Sharp P E, Blair H T, Etkin D, Tzanetos D B. Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells.  J Neurosci. 1995;  15(1 Pt 1) 173-189
  • 47 Lever C, Wills T, Cacucci F, Burgess N, O'Keefe J. Long-term plasticity in hippocampal place-cell representation of environmental geometry.  Nature. 2002;  416(6876) 90-94
  • 48 Brandt T, Schautzer F, Hamilton D A et al.. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans.  Brain. 2005;  128(Pt 11) 2732-2741
  • 49 Vitte E, Derosier C, Caritu Y, Berthoz A, Hasboun D, Soulié D. Activation of the hippocampal formation by vestibular stimulation: a functional magnetic resonance imaging study.  Exp Brain Res. 1996;  112(3) 523-526
  • 50 Kleinjung T, Eichhammer P, Langguth B et al.. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus.  Otolaryngol Head Neck Surg. 2005;  132 566-569
  • 51 Eichhammer P, Langguth B, Marienhagen J, Kleinjung T, Hajak G. Neuronavigated repetitive transcranial magnetic stimulation in patients with tinnitus: a short case series.  Biol Psychiatry. 2003;  54(8) 862-865
  • 52 Plewnia C, Reimold M, Najib A, Reischl G, Plontke S K, Gerloff C. Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study.  J Neurol Neurosurg Psychiatry. 2007;  78(2) 152-156
  • 53 Smith J A, Mennemeier M, Bartel T et al.. Repetitive transcranial magnetic stimulation for tinnitus: a pilot study.  Laryngoscope. 2007;  117(3) 529-534
  • 54 Arnold W, Bartenstein P, Oestreicher E, Römer W, Schwaiger M. Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose.  ORL J Otorhinolaryngol Relat Spec. 1996;  58(4) 195-199
  • 55 Nachum Z, Shupak A, Letichevsky V et al.. Mal de debarquement and posture: reduced reliance on vestibular and visual cues.  Laryngoscope. 2004;  114(3) 581-586

Yoon-Hee ChaM.D. 

Visiting Researcher, Department of Neurology, David Geffen School of Medicine at UCLA

710 Westwood Plaza, Box 951769, Los Angeles, CA 90095

eMail: yhcha@mednet.ucla.edu

    >