Abstract
To dissect and penetrate complexicity regarding the tissue-specific and environment-induced
expression modes of cytosolic and plastidial terpene biosynthetic genes in A. annua , corresponding mRNAs relevant to terpene biosynthesis were quantitatively compared
among distinctive organs and during different growth stages. Although all examined
mRNAs gradually elevate from June to August in tested organs, a putative artemisinin
biosynthesis responsible DBR2 mRNA represents the most abundant transcript anyplace and anytime. Apart from others,
senescent leaves endow global activation of artemisinin biosynthetic genes and ultimately
lead to enhanced artemisinin production. Direct measurement of 1 O2 burst from senescent leaves strongly supports an involvement of 1 O2 in conversion from precursor(s) to artemisinin. In the context of environmental stresses,
physical and chemical stress signals that include those invoking 1 O2 burst were evaluated as if inducing artemisinin biosynthetic genes. The quantitative
data have reiterated a common pattern of modulating artemisinin production in A. annua by triggering 1 O2 burst during senescence and under chilling acclimatization. In conclusion, a missing
link concatenating senescence-coupled 1 O2 generation to 1 O2 -induced upregulation of artemisinin biosynthetic genes has been re-established, which
would provide a fertile base for future endeavors pursuing further enhancements of
artemisinin production.
Key words
Artemisia annua
- Asteraceae - artemisinin - oxidative stress - singlet oxygen - induction - expression
profile
References
1
Klayman D L.
Qinghaosu (artemisinin): an antimalarial drug from China.
Science.
1985;
228
1049-1055
2
Bertea C M, Freije J R, van der Woude H, Verstappen F W A, Perk L, Marquez V, de Kraker J W,
Posthumus M A, Jansen B J M, de Groot A, Franssen M C R, Bouwmeester H J.
Identification of intermediates and enzymes involved in the early steps of artemisinin
biosynthesis in Artemisia annua .
Planta Med.
2005;
71
40-47
3
Covello P S, Teoh K H, Polichuk D R, Reed D W, Nowak G.
Functional genomics and the biosynthesis of artemisinin.
Phytochemistry.
2007;
68
1864-1871
4
Zeng Q P, Qiu F, Yuan L.
Production of artemisinin by genetically modified microbes.
Biotechnol Lett.
2008;
30
581-592
5 Zeng Q P, Yang R Y, Feng L L, Yang X Q.
Genetic and environmental regulation and artificial metabolic manipulation for artemisinin
biosynthesis. Richter FW Biotechnology: research, technology and applications. New York; Nova Science
Publishers, Inc. 2008: 159-210
6
Towler M J, Weathers P J.
Evidence of artemisinin production from IPP stemming from both the mevalonate and
the non-mevalonate pathways.
Plant Cell Rep.
2007;
26
2129-2136
7
Bouwmeester H J, Wallaart T E, Janssen M H A, van Loo B, Jansen B J M, Posthumus M A,
Schmidt C O, de Kraker J W, Konig W A, Fransen M C.
Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis.
Phytochemistry.
1999;
52
843-854
8
Teoh K H, Polichuk D R, Reed D W, Nowak G, Covello P S.
Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a
key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.
FEBS Lett.
2006;
580
1411-1416
9
Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A,
Ham T S, Kirby J, Chang M C Y, Withers S T, Shiba Y, Sarpong R, Keasling J D.
Production of the antimalarial drug precursor artemisinic acid in engineered yeast.
Nature.
2006;
440
940-943
10
Lindahl A L, Olsson M E, Mercke P, Tollbom Ö, Schelin J, Brodelius M, Brodelius P E.
Production of the artemisinin precursor amorpha-4,11-diene by engineered Sacharomyces cerevisiae .
Biotechnol Lett.
2006;
28
571-580
11
Chang M C Y, Eachus R A, Trieu W, Ro D K, Keasling J D.
Engineering Escherichia coli for production of functionalized terpenoids using plant P450s.
Nat Chem Biol.
2007;
3
274-277
12
Zhang Y S, Teoh K H, Reed D W, Maes L, Goossens A, Olson D J H, Ross A R S, Covello P S.
The molecular cloning of artemisinic aldehyde Δ11 (13) reductase and its role in glandular
trichome-dependent biosynthesis of artemisinin in Artemisia annua .
J Biol Chem.
2008;
283
21501-21508
13
Sy L K, Brown G D.
The mechanism of the spontaneous autoxidation of dihydro-artemisinic acid.
Tetrahedron.
2002;
58
897-908
14
Wallaart T E, van Uden W, Lubberink H G M, Woerdenbag H J, Pras N, Quax W J.
Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin.
J Nat Prod.
1999;
62
430-433
15
Lommen W J M, Schenk E, Bouwmeester H J, Verstappen F W A.
Trichome dynamics and artemisinin accumulation during development and senescence of
Artemisia annua leaves.
Planta Med.
2006;
72
336-345
16
Sangwan R S, Agarwal K, Luthra R, Thakur R S, Sangwan N S.
Biotransformation of arteannuic acid into arteannuin B and artemisinin in Artemisia annua .
Phytochemistry.
1993;
34
1301-1302
17
Nair M S R, Basile D V.
Bioconversion of arteannuin B to artemisinin.
J Nat Prod.
1993;
56
1559-1566
18
Hirayama O, Nakamura K, Hamada S, Kobayashi Y.
Singlet oxygen quenching ability of naturally occurring carotenoids.
Lipids.
1994;
29
149-150
19
Wallaart T E, Bouwmeester H J, Hille J.
Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in
the biosynthetic pathway of the novel antimalarial drug artemisinin.
Planta.
2001;
212
460-465
20
Yin L L, Zhao C, Huang Y, Yang R Y.
Abiotic stress-induced expression of artemisinin biosynthesis genes in Artemisia annua L.
Chin Appl Environ Biol.
2008;
14
1-5
21
Zeng Q P, Zhao C, Yin L L, Yang R Y, Zeng X M, Huang Y, Feng L L, Yang X Q.
Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low
temperature-induced gene overexpression.
Sci China Ser C (Life Sci).
2008;
51
232-244
22
Lommen W J M, Elzinga S, Verstappen F W A, Bouwmeester H J.
Artemisinin and sesquiterpene precursors in dead and the green leaves of Artemisia annua L. crops.
Planta Med.
2007;
73
1133-1139
23
Yang R Y, Feng L L, Yang X Q, Yin L L, Xu X L, Zeng Q P.
Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant
gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants.
Planta Med.
2008;
74
1510-1516
24
Zeng Q P, Zeng X M, Yin L L, Yang R Y, Feng L L, Yang X Q.
Quantification of three key enzymes involved in artemisinin biogenesis in Artemisia annua by polyclonal antisera-based ELISA.
Plant Mol Biol Rep.
2009;
27
50-57
25
Pedraza-Chaverrí J, Barrera D, Maldonado P D, Chirino Y I, Macías-Ruvalcaba N A, Medina-Campos O N,
Castro L, Salcedo M I, Hernandez-Pando R.
S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin- induced oxidative and nitrosative stress and renal damage
in vivo .
EMC Clin Pharmacol.
2004;
4
5
26
Velikova V, Edreva A, Loreto F.
Endogenous isoprene protects Phragmites australis leaves against singlet oxygen.
Physiol Plant.
2004;
122
219-225
27
Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C.
Is the reaction catalyzed by 3-hydroxyl-3-methylglutaryl coenzyme A reductase a rate-limiting
step for isoprenoid biosynthesis in plant?.
Plant Physiol.
1995;
109
1337-1343
28
Gregersen P L, Holm P B.
Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.).
Plant Biotechnol J.
2007;
5
192-206
29
Menke F L H, Parchmann S, Mueller M J, Kijne J W, Memelink J.
Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced
expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus .
Plant Physiol.
1999;
119
1289-1296
30
Wang J W, Zhang Z, Tan R X.
Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp.
Biotechnol Lett.
2001;
23
857-860
31
Xu X, Hu X, Neill S J, Fang J, Cai W.
Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis
in cultured cells of Panax ginseng C. A. Meyer.
Plant Cell Physiol.
2005;
46
947-954
32
Wise R R, Naylor A W.
Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide
in the breakdown of pigments and endogenous antioxidants.
Plant Physiol.
1987;
83
278-282
33
Feng L L, Yang R Y, Yang X Q, Zeng X M, Lu W J, Zeng Q P.
Synergistic re-channeling of mevalonate pathway for artemisinin overproduction in
transgenic Artemisia annua .
Plant Sci.
2009;
177
57-67
34
Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych I M, Apel K.
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signalling of stress
responses in Arabidopsis thaliana .
Proc Natl Acad Sci USA.
2007;
104
672-677
35
Lee K P, Kim C, Landgraf F, Apel K.
EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid
to the nucleus of Arabidopsis thaliana .
Proc Natl Acad Sci USA.
2007;
104
10270-10275
36
Laloi C, Przybyla D, Apel K.
A genetic approach towards elucidating the biological activity of different reactive
oxygen species in Arabidopsis thaliana .
J Exp Bot.
2006;
57
1719-1724
37
Wallaart T E, Pras N, Beekman A C, Quax W J.
Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes.
Planta Med.
2000;
66
57-62
1 These authors contributed equally to the present work.
Prof. Dr. Qing-Ping Zeng
Laboratory of Biotechnology Tropical Medicine Institute Guangzhou University of Chinese Medicine
No. 12, Airport Road
510405 Guangzhou
People's Republic of China
Phone: + 86 20 36 58 51 00
Fax: + 86 20 86 35 43 29
Email: qpzeng@gzhtcm.edu.cn