Int J Sports Med 2010; 31(1): 44-50
DOI: 10.1055/s-0029-1239560
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Equal BMD After Daily or Triweekly Exercise in Growing Rats

B. D. Kayser1 , J. K. Godfrey1 , R. M. Cunningham1 , R. A. Pierce1 , S. V. Jaque2 , K. D. Sumida1
  • 1Chapman University, Department of Biological Sciences, Orange, United States
  • 2California State University, Northridge, Department of Kinesiology, Northridge, United States
Further Information

Publication History

accepted after revision August 26, 2009

Publication Date:
22 December 2009 (online)

Abstract

The purpose of this study was to examine the efficacy of continuous resistance training (3 days/wk) compared to interrupted resistance training where 20–24 h separated an exercise bout (i. e. 6 days/wk) for enhancing bone mineral density (BMD) in growing male rats. The total volume of work performed per week between the two resistance training programs was equivalent by design. Young male rats were randomly divided into Control (Con, n=9), 3 days/wk resistance trained group (RT3, n=9), and 6 days/wk resistance trained group (RT6, n=9). The RT3 and RT6 groups were conditioned to climb a vertical ladder with weights appended to their tail for a total of 6 wks. After 6 wks, BMD (assessed via DXA) from the left tibia was significantly greater for RT3 (0.242±0.004 g/cm2) and RT6 (0.244±0.004 g/cm2) compared to Con (0.226±0.003 g/cm2). Further, serum osteocalcin (oc, in ng/ml) was significantly greater for RT3 (75.8±4.4) and RT6 (73.5±3.8) compared to Con (53.4±2.4). There was no significant difference in BMD or serum OC between RT3 and RT6 groups. The results indicate that both resistance training programs were equally effective in elevating bone mineral density in young, growing rats.

References

  • 1 Bonjour JPH, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence.  J Clin Endocrinol Metab. 1991;  73 555-563
  • 2 Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. Moderate exercise during growth in prepubertal boys: Changes in bone mass, size, volumetric density, and bone strength: A controlled prospective study.  J Bone Min Res. 1998;  13 1814-1821
  • 3 Danz AM, Zittermann A, Schiedermaier U, Klein K, Hotzel D, Schonau E. The effect of a specific strength-development exercise on bone mineral density in perimenopausal and postmenopausal women.  J Women Health. 1998;  7 701-709
  • 4 Dugan SA, Frontera WR. Muscle fatigue and muscle injury.  Phys Med Rehabil Clin N Am. 2000;  11 385-403
  • 5 Fujimura R, Ashizawa N, Watanabe M, Mukai N, Amagai H, Fukubayashi T, Hayashi K, Tokuyama K, Suzuki M. Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism.  J Bone Min Res. 1997;  12 656-662
  • 6 Godfrey JK, Kayser BD, Gomez GV, Bennett J, Jaque SV, Sumida KD. Interrupted resistance training and BMD in growing rats.  Int J Sports Med. 2009;  30 579-584
  • 7 Goettsch BM, Smith MZ, O’Brien JA, Gomez GV, Jaque SV, Sumida KD. Interrupted vs. uninterrupted training on BMD during growth.  Int J Sports Med. 2008;  29 980-986
  • 8 Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I. Effect of long-term unilateral activity on bone mineral density of female junior tennis players.  J Bone Miner Res. 1998;  13 310-319
  • 9 Hornberger TA, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks progressive resistance exercise in the rat.  Can J Appl Physiol. 2004;  29 16-31
  • 10 Huang TH, Lin SC, Chang FL, Hsieh SS, Liu SH, Yang RS. Effects of different exercise modes on mineralization, structure, and biochemical properties in growing bone.  J Appl Physiol. 2003;  95 300-307
  • 11 Johnston CC, Hui SL, Wiske P, Norton JA, Epstein S. Bone mass at maturity and subsequent rates of loss as determinants of osteoporosis. In Osteoporosis: Recent Advances in Pathogenesis and Treatment. Edited by H.F. DeLuca University Park Press, Baltimore, MD 1981: 285-291
  • 12 Lehtonen-Veromaa M, Mottonen T, Nuotio I, Heinonen OJ, Viikari J. Influence of physical activity on ultrasound and dual-energy X-ray absorptiometry bone measurements in peripubertal girls: a cross-sectional study.  Calcif Tissue Int. 2000;  66 248-254
  • 13 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 14 MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys.  Bone. 2004;  34 755-764
  • 15 Menkes A, Mazel S, Redmond RA, Koffler K, Libanati CR, Gundberg CM, Zizic TM, Hagberg JM, Pratley RE, Hurley BF. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men.  J Appl Physiol. 1993;  74 2478-2484
  • 16 Notomi T, Lee SJ, Okimoto N, Okazaki Y, Takamoto T, Nakamura T, Suzuki M. Effects of resistance exercise training on mass, strength, and turnover of bone in growing rats.  Eur J Appl Physiol. 2000;  82 268-274
  • 17 Notomi T, Okimoto N, Okazaki Y, Tanaka Y, Nakamura T, Suzuki M. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats.  J Bone Min Res. 2001;  16 166-174
  • 18 Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone.  J Exp Biol. 2001;  204 3389-3399
  • 19 Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts.  J Bone Min Res. 2002;  17 1545-1554
  • 20 Scerpella TA, Davenport M, Morganti CM, Kanaley JA, Johnson LM. Dose related association of impact activity and bone mineral density in pre-pubertal girls.  Calcif Tissue Int. 2003;  72 24-31
  • 21 Smith MZ, Goettsch BM, O’Brien JA, Van Ramshorst RD, Jaque SV, Sumida KD. Resistance training and bone mineral density during growth.  Int J Sports Med. 2008;  29 316-321
  • 22 Turner CH. Three rules for bone adaptation to mechanical stimuli.  Bone. 1998;  23 399-407
  • 23 Turner CH, Ichiro O, Takano Y. Mechanotransduction in bone: role of strain rate.  Am J Physiol. 1995;  269 E438-E442
  • 24 Turner CH, Robling AG. Designing exercise regimens to increase bone strength.  Exerc Sport Sci Rev. 2003;  31 45-50
  • 25 Umemura Y, Sogo N, Honda A. Effects of intervals between jumps or bouts on osteogenic response to loading.  J Appl Physiol. 2002;  93 1345-1348
  • 26 Van Lagendonck L, Claessens AL, Vlietinck R, Derom C, Beunen G. Influence of weight-bearing exercises on bone acquisition in prepubertal monozygotic female twins: a randomized controlled prospective study.  Calcif Tissue Int. 2003;  72 666-674
  • 27 Welten DC, Kemper HCG, Post BG, Van Mechelen W, Twisk J, Lips P, Teule GJ. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake.  J Bone Miner Res. 1994;  9 1089-1096
  • 28 Westerlind KC, Fluckey JD, Gordon SE, Kraemer WM, Farrell PA, Turner RT. Effect of resistance exercise training on cortical and cancellous bone in mature male rats.  J Appl Physiol. 1998;  84 459-464

Correspondence

Dr. Ken D. Sumida

Chapman University

Department of Biological Sciences

One University Drive

92866 Orange

United States

Phone: 714/997 69 95

Fax: 714/532 60 48

Email: sumida@chapman.edu

    >