Semin Reprod Med 2009; 27(5): 403-408
DOI: 10.1055/s-0029-1237428
© Thieme Medical Publishers

Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction

Carlos M. Guerrero-Bosagna1 , Michael K. Skinner1
  • 1Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington
Further Information

Publication History

Publication Date:
26 August 2009 (online)

ABSTRACT

Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype.

REFERENCES

  • 1 McLachlan J A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals.  Endocr Rev. 2001;  22(3) 319-341
  • 2 Gallo D, Cantelmo F, Distefano M et al.. Reproductive effects of dietary soy in female Wistar rats.  Food Chem Toxicol. 1999;  37(5) 493-502
  • 3 Guerrero-Bosagna C M, Sabat P, Valdovinos F S, Valladares L E, Clark S J. Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice.  BMC Physiol. 2008;  8 17
  • 4 Bullock B C, Newbold R R, McLachlan J A. Lesions of testis and epididymis associated with prenatal diethylstilbestrol exposure.  Environ Health Perspect. 1988;  77 29-31
  • 5 Newbold R R. Prenatal exposure to diethylstilbestrol (DES).  Fertil Steril. 2008;  89(2, suppl) e55-e56
  • 6 Newbold R R, Hanson R B, Jefferson W N, Bullock B C, Haseman J, McLachlan J A. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol.  Carcinogenesis. 2000;  21(7) 1355-1363
  • 7 Markey C M, Coombs M A, Sonnenschein C, Soto A M. Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs.  Evol Dev. 2003;  5(1) 67-75
  • 8 vom Saal F S, Cooke P S, Buchanan D L et al.. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior.  Toxicol Ind Health. 1998;  14(1–2) 239-260
  • 9 Gray Jr L E, Ostby J, Furr J, Price M, Veeramachaneni D N, Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat.  Toxicol Sci. 2000;  58(2) 350-365
  • 10 Gray Jr L E, Wolf C, Lambright C et al.. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p′-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat.  Toxicol Ind Health. 1999;  15(1–2) 94-118
  • 11 Howdeshell K L, Rider C V, Wilson V S, Gray Jr L E. Mechanisms of action of phthalate esters, individually and in combination, to induce abnormal reproductive development in male laboratory rats.  Environ Res. 2008;  108(2) 168-176
  • 12 Anway M D, Cupp A S, Uzumcu M, Skinner M K. Epigenetic transgenerational actions of endocrine disruptors and male fertility.  Science. 2005;  308(5727) 1466-1469
  • 13 Anway M D, Leathers C, Skinner M K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease.  Endocrinology. 2006;  147(12) 5515-5523
  • 14 Anway M D, Memon M A, Uzumcu M, Skinner M K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis.  J Androl. 2006;  27(6) 868-879
  • 15 Anway M D, Rekow S S, Skinner M K. Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis.  Reprod Toxicol. 2008;  26(2) 100-106
  • 16 Nilsson E E, Anway M D, Stanfield J, Skinner M K. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease.  Reproduction. 2008;  135(5) 713-721
  • 17 Skinner M K, Anway M D. Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors.  Ann N Y Acad Sci. 2005;  1061 18-32
  • 18 Danzo B J. The effects of environmental hormones on reproduction.  Cell Mol Life Sci. 1998;  54(11) 1249-1264
  • 19 Extavour C G, Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation.  Development. 2003;  130(24) 5869-5884
  • 20 Cupp A S, Uzumcu M, Suzuki H, Dirks K, Phillips B, Skinner M K. Effect of transient embryonic in vivo exposure to the endocrine disruptor methoxychlor on embryonic and postnatal testis development.  J Androl. 2003;  24(5) 736-745
  • 21 Uzumcu M, Suzuki H, Skinner M K. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function.  Reprod Toxicol. 2004;  18(6) 765-774
  • 22 Skinner M K. What is an epigenetic transgenerational phenotype? F3 or F2.  Reprod Toxicol. 2008;  25(1) 2-6
  • 23 Kelce W R, Monosson E, Gamcsik M P, Laws S C, Gray Jr L E. Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites.  Toxicol Appl Pharmacol. 1994;  126(2) 276-285
  • 24 Wong C, Kelce W R, Sar M, Wilson E M. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide.  J Biol Chem. 1995;  270(34) 19998-20003
  • 25 André S M, Markowski V P. Learning deficits expressed as delayed extinction of a conditioned running response following perinatal exposure to vinclozolin.  Neurotoxicol Teratol. 2006;  28(4) 482-488
  • 26 Crews D, Gore A C, Hsu T S et al.. Transgenerational epigenetic imprints on mate preference.  Proc Natl Acad Sci U S A. 2007;  104(14) 5942-5946
  • 27 Ottinger M A, Lavoie E, Thompson N et al.. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds.  Brain Res Rev. 2008;  57(2) 376-385
  • 28 Ottinger M A, Quinn Jr M J, Lavoie E et al.. Consequences of endocrine disrupting chemicals on reproductive endocrine function in birds: establishing reliable end points of exposure.  Domest Anim Endocrinol. 2005;  29(2) 411-419
  • 29 Skinner M K, Anway M D, Savenkova M I, Gore A C, Crews D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior.  PLoS One. 2008;  3(11) e3745
  • 30 Anway M D, Rekow S S, Skinner M K. Transgenerational epigenetic programming of the embryonic testis transcriptome.  Genomics. 2008;  91(1) 30-40
  • 31 Lewis S E. Life cycle of the mammalian germ cell: implication for spontaneous mutation frequencies.  Teratology. 1999;  59(4) 205-209
  • 32 Russell L B, Hunsicker P R, Cacheiro N L, Bangham J W, Russell W L, Shelby M D. Chlorambucil effectively induces deletion mutations in mouse germ cells.  Proc Natl Acad Sci U S A. 1989;  86(10) 3704-3708
  • 33 Russell L B, Hunsicker P R, Shelby M D. Melphalan, a second chemical for which specific-locus mutation induction in the mouse is maximum in early spermatids.  Mutat Res. 1992;  282(3) 151-158
  • 34 MacPhee D G. Epigenetics and epimutagens: some new perspectives on cancer, germ line effects and endocrine disrupters.  Mutat Res. 1998;  400(1–2) 369-379
  • 35 Surani M A. Reprogramming of genome function through epigenetic inheritance.  Nature. 2001;  414(6859) 122-128
  • 36 Van Speybroeck L. From epigenesis to epigenetics: the case of C. H. Waddington.  Ann N Y Acad Sci. 2002;  981 61-81
  • 37 Waddington C H. Principles of Embryology. London, United Kingdom; Allen & Unwin 1956
  • 38 Jablonka E, Matzke M, Thieffry D, Van Speybroeck L. The genome in context: biologists and philosophers on epigenetics.  Bioessays. 2002;  24(4) 392-394
  • 39 Laird P W, Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics.  Annu Rev Genet. 1996;  30 441-464
  • 40 Singal R, Ginder G D. DNA methylation.  Blood. 1999;  93(12) 4059-4070
  • 41 Wallace J A, Orr-Weaver T L. Replication of heterochromatin: insights into mechanisms of epigenetic inheritance.  Chromosoma. 2005;  114(6) 389-402
  • 42 Craig J M. Heterochromatin—many flavours, common themes.  Bioessays. 2005;  27(1) 17-28
  • 43 Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code?.  Curr Opin Genet Dev. 2005;  15(2) 163-176
  • 44 Fuks F. DNA methylation and histone modifications: teaming up to silence genes.  Curr Opin Genet Dev. 2005;  15(5) 490-495
  • 45 Kim V N. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes.  Genes Dev. 2006;  20(15) 1993-1997
  • 46 Chen Z X, Riggs A D. Maintenance and regulation of DNA methylation patterns in mammals.  Biochem Cell Biol. 2005;  83(4) 438-448
  • 47 Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development.  Science. 2001;  293(5532) 1089-1093
  • 48 Hajkova P, Erhardt S, Lane N et al.. Epigenetic reprogramming in mouse primordial germ cells.  Mech Dev. 2002;  117(1–2) 15-23
  • 49 Constância M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms.  Genome Res. 1998;  8(9) 881-900
  • 50 Guerrero-Bosagna C, Sabat P, Valladares L. Environmental signaling and evolutionary change: can exposure of pregnant mammals to environmental estrogens lead to epigenetically induced evolutionary changes in embryos?.  Evol Dev. 2005;  7(4) 341-350
  • 51 Ho S M, Tang W Y, Belmonte de Frausto J, Prins G S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4.  Cancer Res. 2006;  66(11) 5624-5632
  • 52 Li S, Hansman R, Newbold R, Davis B, McLachlan J A, Barrett J C. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus.  Mol Carcinog. 2003;  38(2) 78-84
  • 53 Champagne F A, Weaver I C, Diorio J, Dymov S, Szyf M, Meaney M J. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring.  Endocrinology. 2006;  147(6) 2909-2915
  • 54 Li S, Hursting S D, Davis B J, McLachlan J A, Barrett J C. Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbestrol-induced cancers.  Ann N Y Acad Sci. 2003;  983 161-169
  • 55 Guerrero-Bosagna C, Valladares L. Endocrine disruptors, epigenetically induced changes, and transgenerational transmission of characters and epigenetic states. In: Gore AC Endocrine Disrupting Chemicals: From Basic Research to Clinical Practice. Totowa, NJ; Humana Press 2007: 175-189
  • 56 Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility.  Nat Rev Genet. 2007;  8(4) 253-262
  • 57 Edwards T M, Myers J P. Environmental exposures and gene regulation in disease etiology.  Environ Health Perspect. 2007;  115(9) 1264-1270
  • 58 Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2.  Biol Reprod. 2004;  70(6) 1790-1797

Michael K Skinner

Center for Reproductive Biology, School of Molecular Biosciences

Washington State University, Pullman, WA 99164-4231

Email: skinner@wsu.edu

    >