Semin Reprod Med 2009; 27(5): 380-390
DOI: 10.1055/s-0029-1237426
© Thieme Medical Publishers

Environmental Influences on Epigenetic Profiles

Melissa A. Suter1 , Kjersti M. Aagaard-Tillery1
  • 1Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas
Further Information

Publication History

Publication Date:
26 August 2009 (online)


Studies of environmental challenges, such as hazardous air pollutants, nonmutagenic toxins, diet choice, and maternal behavioral patterns, reveal changes in gene expression patterns, DNA methylation, and histone modifications that are in causal association with exogenous exposures. In this article we summarize some of the recent advances in the field of environmental epigenetics and highlight seminal studies that implicate in utero exposures as causative agents in altering not only the epigenome of the exposed gestation, but that of subsequent generations. Current studies of the effects of maternal behavior, exposure to environmental toxins, and exposure to maternal diet and an altered gestational milieu are summarized.


  • 1 Hammoud A O, Bujold E, Sorokin Y, Schild C, Krapp M, Baumann P. Smoking in pregnancy revisited: findings from a large population-based study.  Am J Obstet Gynecol. 2005;  192(6) 1856-1862 discussion 1862-1863
  • 2 Kyrklund-Blomberg N B, Cnattingius S. Preterm birth and maternal smoking: risks related to gestational age and onset of delivery.  Am J Obstet Gynecol. 1998;  179(4) 1051-1055
  • 3 Cnattingius S, Granath F, Petersson G, Harlow B L. The influence of gestational age and smoking habits on the risk of subsequent preterm deliveries.  N Engl J Med. 1999;  341(13) 943-948
  • 4 Peacock J L, Bland J M, Anderson H R. Preterm delivery: effects of socioeconomic factors, psychological stress, smoking, alcohol, and caffeine.  BMJ. 1995;  311(7004) 531-535
  • 5 Peacock J L, Cook D G, Carey I M et al.. Maternal cotinine level during pregnancy and birthweight for gestational age.  Int J Epidemiol. 1998;  27(4) 647-656
  • 6 Everson R B, Randerath E, Santella R M, Avitts T A, Weinstein I B, Randerath K. Quantitative associations between DNA damage in human placenta and maternal smoking and birth weight.  J Natl Cancer Inst. 1988;  80(8) 567-576
  • 7 Cnattingius S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes.  Nicotine Tob Res. 2004;  6(suppl 2) S125-S140
  • 8 Secker-Walker R H, Vacek P M. Relationships between cigarette smoking during pregnancy, gestational age, maternal weight gain, and infant birthweight.  Addict Behav. 2003;  28(1) 55-66
  • 9 Vogt Isaksen C. Maternal smoking, intrauterine growth restriction, and placental apoptosis.  Pediatr Dev Pathol. 2004;  7(5) 433-442
  • 10 Castro L C, Allen R, Ogunyemi D, Platt L D. Cigarette smoking during pregnancy: acute effects on uterine flow velocity waveforms.  Obstet Gynecol. 1993;  81(4) 551-555
  • 11 Whyatt R M, Perera F P, Jedrychowski W, Santella R M, Garte S, Bell D A. Association between polycyclic aromatic hydrocarbon-DNA adduct levels in maternal and newborn white blood cells and glutathione S-transferase P1 and CYP1A1 polymorphisms.  Cancer Epidemiol Biomarkers Prev. 2000;  9(2) 207-212
  • 12 Nukui T, Day R D, Sims C S, Ness R B, Romkes M. Maternal/newborn GSTT1 null genotype contributes to risk of preterm, low birthweight infants.  Pharmacogenetics. 2004;  14(9) 569-576
  • 13 Marana H R, Andrade J M, Martins G A, Silva J S, Sala M A, Cunha S P. A morphometric study of maternal smoking on apoptosis in the syncytiotrophoblast.  Int J Gynaecol Obstet. 1998;  61(1) 21-27
  • 14 Perera F P, Jedrychowski W, Rauth V, Whyatt R M. Molecular epidemiologic research on the effects of environmental pollutants on the fetus.  Environ Health Perspect. 1999;  107(suppl 3) 451-460
  • 15 Huel G, Godin J, Moreau T et al.. Aryl hydrocarbon hydroxylase activity in human placenta of passive smokers.  Environ Res. 1989;  50(1) 173-183
  • 16 Gladen B C, Zadorozhnaja T D, Chislovska N et al.. Polycyclic aromatic hydrocarbons in placenta.  Hum Exp Toxicol. 2000;  19(11) 597-603
  • 17 Daube H, Scherer G, Riedel K et al.. DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status.  J Cancer Res Clin Oncol. 1997;  123(3) 141-151
  • 18 Anttila S, Hakkola J, Tuominen P et al.. Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking.  Cancer Res. 2003;  63(24) 8623-8628
  • 19 Smits K M, Benhamou S, Garte S et al.. Association of metabolic gene polymorphisms with tobacco consumption in healthy controls.  Int J Cancer. 2004;  110(2) 266-270
  • 20 Raunio H, Rautio A, Gullstén H, Pelkonen O. Polymorphisms of CYP2A6 and its practical consequences.  Br J Clin Pharmacol. 2001;  52(4) 357-363
  • 21 Larsen J E, Colosimo M L, Yang I A, Bowman R, Zimmerman P V, Fong K M. CYP1A1 Ile462Val and MPO G-463A interact to increase risk of adenocarcinoma but not squamous cell carcinoma of the lung.  Carcinogenesis. 2006;  27(3) 525-532
  • 22 Hou L, Chatterjee N, Huang W Y et al.. CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma.  Carcinogenesis. 2005;  26(6) 1122-1128
  • 23 Mooney L A, Bell D A, Santella R M et al.. Contribution of genetic and nutritional factors to DNA damage in heavy smokers.  Carcinogenesis. 1997;  18(3) 503-509
  • 24 Czekaj P, Wiaderkiewicz A, Florek E, Wiaderkiewicz R. Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta.  Arch Toxicol. 2005;  79(1) 13-24
  • 25 Schoedel K A, Hoffmann E B, Rao Y, Sellers F M, Tyndale R F. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians.  Pharmacogenetics. 2004;  14(9) 615-626
  • 26 Pianezza M L, Sellers E M, Tyndale R F. Nicotine metabolism defect reduces smoking.  Nature. 1998;  393(6687) 750
  • 27 Oscarson M, McLellan R A, Gullsten H et al.. Identification and characterisation of novel polymorphisms in the CYP2A locus: implications for nicotine metabolism.  FEBS Lett. 1999;  460(2) 321-327
  • 28 Luger K, Mader A W, Richmond R K et al.. Crystal structure of the nucleosome core particle at 2.8 A resolution.  Nature. 1997;  389(6648) 251-260
  • 29 Luger K. Dynamic nucleosomes.  Chromosome Res. 2006;  14(1) 5-16
  • 30 Turner B M. Histone acetylation and an epigenetic code.  Bioessays. 2000;  22(9) 836-845
  • 31 Clayton A L, Hazzalin C A, Mahadevan L C. Enhanced histone acetylation and transcription: a dynamic perspective.  Mol Cell. 2006;  23(3) 289-296
  • 32 Mellor J. Dynamic nucleosomes and gene transcription.  Trends Genet. 2006;  22(6) 320-329
  • 33 Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease.  Nat Rev Genet. 2007;  8(11) 829-833
  • 34 Birney E, Stamatoyannopoulos J A, Dutta A et al.. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.  Nature. 2007;  447(7146) 799-816
  • 35 Nightingale K P, O'Neill L P, Turner B M. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code.  Curr Opin Genet Dev. 2006;  16(2) 125-136
  • 36 Barski A, Cuddapah S, Cui K et al.. High-resolution profiling of histone methylations in the human genome.  Cell. 2007;  129(4) 823-837
  • 37 Kim T H, Abdullaev Z K, Smith A D et al.. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.  Cell. 2007;  128(6) 1231-1245
  • 38 Ruthenburg A J, Li H, Patel D J et al.. Multivalent engagement of chromatin modifications by linked binding modules.  Nat Rev Mol Cell Biol. 2007;  8(12) 983-994
  • 39 Bestor T H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain.  EMBO J. 1992;  11(7) 2611-2617
  • 40 Li E, Bestor T H, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.  Cell. 1992;  69(6) 915-926
  • 41 Okano M, Bell D W, Haber D A et al.. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.  Cell. 1999;  99(3) 247-257
  • 42 Lyko F, Ramsahoye B H, Kashevsky H et al.. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila.  Nat Genet. 1999;  23(3) 363-366
  • 43 Bestor T, Laudano A, Mattaliano R et al.. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases.  J Mol Biol. 1988;  203(4) 971-983
  • 44 Chen T, Ueda Y, Dodge J E et al.. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b.  Mol Cell Biol. 2003;  23(16) 5594-5605
  • 45 Rhee I, Bachman K E, Park B H et al.. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.  Nature. 2002;  416(6880) 552-556
  • 46 Takai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22.  Proc Natl Acad Sci U S A. 2002;  99(6) 3740-3745
  • 47 Jones P A. The DNA methylation paradox.  Trends Genet. 1999;  15(1) 34-37
  • 48 Holliday R, Pugh J E. DNA modification mechanisms and gene activity during development.  Science. 1975;  187(4173) 226-232
  • 49 Riggs A D. X inactivation, differentiation, and DNA methylation.  Cytogenet Cell Genet. 1975;  14(1) 9-25
  • 50 Mayer W, Niveleau A, Walter J et al.. Demethylation of the zygotic paternal genome.  Nature. 2000;  403(6769) 501-502
  • 51 Oswald J, Engemann S, Lane N et al.. Active demethylation of the paternal genome in the mouse zygote.  Curr Biol. 2000;  10(8) 475-478
  • 52 Ehrlich M, Gama-Sosa M A, Huang L H et al.. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells.  Nucleic Acids Res. 1982;  10(8) 2709-2721
  • 53 McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes.  Cell. 1984;  37(1) 179-183
  • 54 Surani M A, Barton S C, Norris M L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.  Nature. 1984;  308(5959) 548-550
  • 55 Stöger R. The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes?.  Bioessays. 2008;  30(2) 156-166
  • 56 Waddington C H. Genetic assimilation.  Adv Genet. 1961;  10 257-293
  • 57 Rutherford S L, Lindquist S. Hsp90 as a capacitor for morphological evolution.  Nature. 1998;  396(6709) 336-342
  • 58 Samakovli D, Thanou A, Valmas C et al.. Hsp90 canalizes developmental perturbation.  J Exp Bot. 2007;  58(13) 3513-3524
  • 59 Queitsch C, Sangster T A, Lindquist S. Hsp90 as a capacitor of phenotypic variation.  Nature. 2002;  417(6889) 618-624
  • 60 Neel J V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?.  Am J Hum Genet. 1962;  14 353-362
  • 61 Paradies Y C, Montoya M J, Fullerton S M. Racialized genetics and the study of complex diseases: the thrifty genotype revisited.  Perspect Biol Med. 2007;  50(2) 203-227
  • 62 Speakman J R. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis.  Cell Metab. 2007;  6(1) 5-12
  • 63 Champagne F A. Epigenetic mechanisms and the transgenerational effects of maternal care.  Front Neuroendocrinol. 2008;  29(3) 386-397
  • 64 Champagne F A, Francis D D, Mar A et al.. Variations in maternal care in the rat as a mediating influence for the effects of environment on development.  Physiol Behav. 2003;  79(3) 359-371
  • 65 Meaney M J, Diorio J, Francis D et al.. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin.  J Neurosci. 2000;  20(10) 3926-3935
  • 66 Laplante P, Diorio J, Meaney M J. Serotonin regulates hippocampal glucocorticoid receptor expression via a 5–HT7 receptor.  Brain Res Dev Brain Res. 2002;  139(2) 199-203
  • 67 Weaver I C, Cervoni N, Champagne F A et al.. Epigenetic programming by maternal behavior.  Nat Neurosci. 2004;  7(8) 847-854
  • 68 Weaver I C, Champagne F A, Brown S E et al.. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life.  J Neurosci. 2005;  25(47) 11045-11054
  • 69 Champagne F A, Weaver I C, Diorio J et al.. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring.  Endocrinology. 2006;  147(6) 2909-2915
  • 70 Guidotti A, Auta J, Davis J M et al.. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.  Arch Gen Psychiatry. 2000;  57(11) 1061-1069
  • 71 Veldic M, Guidotti A, Maloku E et al.. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1.  Proc Natl Acad Sci U S A. 2005;  102(6) 2152-2157
  • 72 Cohen S M, Nichols A, Wyatt R et al.. The administration of methionine to chronic schizophrenic patients: a review of ten studies.  Biol Psychiatry. 1974;  8(2) 209-225
  • 73 Guidotti A, Ruzicka W, Grayson D R et al.. S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis.  Neuroreport. 2007;  18(1) 57-60
  • 74 Tsankova N M, Berton O, Renthal W et al.. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.  Nat Neurosci. 2006;  9(4) 519-525
  • 75 Chwang W B, O'Riordan K J, Levenson J M et al.. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning.  Learn Mem. 2006;  13(3) 322-328
  • 76 Miller C A, Campbell S L, Sweatt J D. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.  Neurobiol Learn Mem. 2008;  89(4) 599-603
  • 77 Levenson J M, O'Riordan K J, Brown K D et al.. Regulation of histone acetylation during memory formation in the hippocampus.  J Biol Chem. 2004;  279(39) 40545-40559
  • 78 Kumar A, Choi K H, Renthal W et al.. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum.  Neuron. 2005;  48(2) 303-314
  • 79 Romieu P, Host L, Gobaille S et al.. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats.  J Neurosci. 2008;  28(38) 9342-9348
  • 80 Nicolaidis S. Prenatal imprinting of postnatal specific appetites and feeding behavior.  Metabolism. 2008;  57(suppl 2) S22-S26
  • 81 Youngentob S L, Molina J C, Spear N E et al.. The effect of gestational ethanol exposure on voluntary ethanol intake in early postnatal and adult rats.  Behav Neurosci. 2007;  121(6) 1306-1315
  • 82 Nicolaidis S, Galaverna O, Metzler C H. Extracellular dehydration during pregnancy increases salt appetite of offspring.  Am J Physiol. 1990;  258(1 Pt 2) R281-R283
  • 83 Anway M D, Cupp A S, Uzumcu M et al.. Epigenetic transgenerational actions of endocrine disruptors and male fertility.  Science. 2005;  308(5727) 1466-1469
  • 84 Anway M D, Skinner M K. Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease.  Prostate. 2008;  68(5) 517-529
  • 85 Nilsson E E, Anway M D, Stanfield J et al.. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease.  Reproduction. 2008;  135(5) 713-721
  • 86 McLachlan J A. Commentary: prenatal exposure to diethylstilbestrol (DES): a continuing story.  Int J Epidemiol. 2006;  35(4) 868-870
  • 87 Baird D D, Newbold R. Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development.  Reprod Toxicol. 2005;  20(1) 81-84
  • 88 Li S, Washburn K A, Moore R et al.. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus.  Cancer Res. 1997;  57(19) 4356-4359
  • 89 Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium.  Chem Res Toxicol. 2008;  21(1) 28-44
  • 90 Karaczyn A A, Golebiowski F, Kasprzak K S. Ni(II) affects ubiquitination of core histones H2B and H2A.  Exp Cell Res. 2006;  312(17) 3252-3259
  • 91 Lee Y W, Klein C B, Kargacin B et al.. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens.  Mol Cell Biol. 1995;  15(5) 2547-2557
  • 92 Broday L, Peng W, Kuo M H et al.. Nickel compounds are novel inhibitors of histone H4 acetylation.  Cancer Res. 2000;  60(2) 238-241
  • 93 Yan Y, Kluz T, Zhang P et al.. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure.  Toxicol Appl Pharmacol. 2003;  190(3) 272-277
  • 94 Chen H, Ke Q, Kluz T et al.. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing.  Mol Cell Biol. 2006;  26(10) 3728-3737
  • 95 Vahter M E. Interactions between arsenic-induced toxicity and nutrition in early life.  J Nutr. 2007;  137(12) 2798-2804
  • 96 Xie Y, Liu J, Benbrahim-Tallaa L et al.. Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic.  Toxicology. 2007;  236(1–2) 7-15
  • 97 Zhou X, Sun H, Ellen T P et al.. Arsenite alters global histone H3 methylation.  Carcinogenesis. 2008;  29(9) 1831-1836
  • 98 Pilsner J R, Liu X, Ahsan H et al.. Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults.  Am J Clin Nutr. 2007;  86(4) 1179-1186
  • 99 Waisberg M, Joseph P, Hale B et al.. Molecular and cellular mechanisms of cadmium carcinogenesis.  Toxicology. 2003;  192(2–3) 95-117
  • 100 Poirier L A, Vlasova T I. The prospective role of abnormal methyl metabolism in cadmium toxicity.  Environ Health Perspect. 2002;  110(Suppl 5) 793-795
  • 101 Huang D, Zhang Y, Qi Y et al.. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation.  Toxicol Lett. 2008;  179(1) 43-47
  • 102 Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health.  Early Hum Dev. 2006;  82(8) 485-491
  • 103 Barker D J. The fetal and infant origins of adult disease.  BMJ. 1990;  301(6761) 1111
  • 104 Heijmans B T, Tobi E W, Stein A D et al.. Persistent epigenetic differences associated with prenatal exposure to famine in humans.  Proc Natl Acad Sci U S A. 2008;  105(44) 17046-17049
  • 105 Brown A S, Susser E S. Prenatal nutritional deficiency and risk of adult schizophrenia.  Schizophr Bull. 2008;  34(6) 1054-1063
  • 106 Franzek E J, Sprangers N, Janssens A C et al.. Prenatal exposure to the 1944–45 Dutch ‘hunger winter’ and addiction later in life.  Addiction. 2008;  103(3) 433-438
  • 107 Painter R C, De Rooij S R, Bossuyt P M et al.. A possible link between prenatal exposure to famine and breast cancer: a preliminary study.  Am J Hum Biol. 2006;  18(6) 853-856
  • 108 Kaati G, Bygren L O, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period.  Eur J Hum Genet. 2002;  10(11) 682-688
  • 109 Aagaard-Tillery K M, Grove K, Bishop J et al.. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome.  J Mol Endocrinol. 2008;  41(2) 91-102
  • 110 Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility.  Nat Rev Genet. 2007;  8(4) 253-262
  • 111 Duhl D M, Vrieling H, Miller K A et al.. Neomorphic agouti mutations in obese yellow mice.  Nat Genet. 1994;  8(1) 59-65
  • 112 Morgan H D, Sutherland H G, Martin D I et al.. Epigenetic inheritance at the agouti locus in the mouse.  Nat Genet. 1999;  23(3) 314-318
  • 113 Blewitt M E, Vickaryous N K, Paldi A, Koseki H, Whitelaw E. Dynamic reprogramming of DNA methylation at an epigeneticallsy sensitive allele in mice.  PLoS Genet. 2006;  2(4) e49
  • 114 Waterland R A, Jirtle R L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation.  Mol Cell Biol. 2003;  23(15) 5293-5300
  • 115 Wolff G L, Kodell R L, Moore S R et al.. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice.  FASEB J. 1998;  12(11) 949-957
  • 116 Waterland R A, Travisano M, Tahiliani K G. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female.  FASEB J. 2007;  21(12) 3380-3385
  • 117 Waterland R A, Travisano M, Tahilani K G, Rached M T, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity.  Int J Obes (Lond). 2008;  32(9) 1373-1379
  • 118 Dolinoy D C, Weidman J R, Waterland R A et al.. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome.  Environ Health Perspect. 2006;  114(4) 567-572

Kjersti M Aagaard-TilleryM.D. Ph.D. 

Department of Obstetrics and Gynecology, Baylor College of Medicine

One Baylor Plaza, Mail Stop: BCM 314 C, Houston, TX 77030