Semin Reprod Med 2009; 27(5): 351-357
DOI: 10.1055/s-0029-1237423
© Thieme Medical Publishers

Epigenetics: Definition, Mechanisms and Clinical Perspective

Cathérine Dupont1 , 2 , D. Randall Armant1 , 3 , Carol A. Brenner1 , 2
  • 1Departments of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
  • 2Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
  • 3Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
Further Information

Publication History

Publication Date:
26 August 2009 (online)

ABSTRACT

A vast array of successive epigenetic modifications ensures the creation of a healthy individual. Crucial epigenetic reprogramming events occur during germ cell development and early embryogenesis in mammals. As highlighted by the large offspring syndrome with in vitro conceived ovine and bovine animals, any disturbance during germ cell development or early embryogenesis has the potential to alter epigenetic reprogramming. Therefore the complete array of human assisted reproductive technology (ART), starting from ovarian hormonal stimulation to embryo uterine transfer, could have a profound impact on the epigenetic state of human in vitro produced individuals. Although some investigators have suggested an increased incidence of epigenetic abnormalities in in vitro conceived children, other researchers have refuted these allegations. To date, multiple reasons can be hypothesized why irrefutable epigenetic alterations as a result of ART have not been demonstrated yet.

REFERENCES

  • 1 Waddington C H. The epigenotype.  Endeavour. 1942;  1 18-20
  • 2 Waddington C H. The Basic Ideas of Biology. Towards a Theoretical Biology. Edinburgh, Scotland; Edinburgh University Press 1968: 1-32
  • 3 Wu Ct, Morris J R. Genes, genetics, and epigenetics: a correspondence.  Science. 2001;  293(5532) 1103-1105
  • 4 Daskalos A, Nikolaidis G, Xinarianos G et al.. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer.  Int J Cancer. 2009;  124(1) 81-87
  • 5 Zaratiegui M, Irvine D V, Martienssen R A. Noncoding RNAs and gene silencing.  Cell. 2007;  128(4) 763-776
  • 6 Dodge J E, Okano M, Dick F et al.. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization.  J Biol Chem. 2005;  280(18) 17986-17991
  • 7 Hotchkiss R D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography.  J Biol Chem. 1948;  175(1) 315-332
  • 8 Griffith J S, Mahler H R. DNA ticketing theory of memory.  Nature. 1969;  223(5206) 580-582
  • 9 Ratel D, Ravanat J L, Berger F, Wion D. N6-methyladenine: the other methylated base of DNA.  Bioessays. 2006;  28(3) 309-315
  • 10 Sinsheimer R L. The action of pancreatic deoxyribonuclease. II. Isomeric dinucleotides.  J Biol Chem. 1955;  215(2) 579-583
  • 11 Woodcock D M, Crowther P J, Diver W P. The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide.  Biochem Biophys Res Commun. 1987;  145(2) 888-894
  • 12 Nyce J, Liu L, Jones P A. Variable effects of DNA-synthesis inhibitors upon DNA methylation in mammalian cells.  Nucleic Acids Res. 1986;  14(10) 4353-4367
  • 13 Ramsahoye B H, Biniszkiewicz D, Lyko F, Clark V, Bird A P, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.  Proc Natl Acad Sci U S A. 2000;  97(10) 5237-5242
  • 14 Naveh-Many T, Cedar H. Active gene sequences are undermethylated.  Proc Natl Acad Sci U S A. 1981;  78(7) 4246-4250
  • 15 Waechter D E, Baserga R. Effect of methylation on expression of microinjected genes.  Proc Natl Acad Sci U S A. 1982;  79(4) 1106-1110
  • 16 Watt F, Molloy P L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter.  Genes Dev. 1988;  2(9) 1136-1143
  • 17 Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein.  Cell. 1991;  64(6) 1123-1134
  • 18 Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins.  Mol Cell Biol. 1998;  18(11) 6538-6547
  • 19 Jones P L, Veenstra G J, Wade P A et al.. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.  Nat Genet. 1998;  19(2) 187-191
  • 20 Nan X, Ng H H, Johnson C A et al.. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.  Nature. 1998;  393(6683) 386-389
  • 21 Leonhardt H, Page A W, Weier H U, Bestor T H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei.  Cell. 1992;  71(5) 865-873
  • 22 Smith S S, Kaplan B E, Sowers L C, Newman E M. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation.  Proc Natl Acad Sci U S A. 1992;  89(10) 4744-4748
  • 23 Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases.  J Mol Biol. 1988;  203(4) 971-983
  • 24 Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases.  Nat Genet. 1998;  19(3) 219-220
  • 25 Okano M, Bell D W, Haber D A, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.  Cell. 1999;  99(3) 247-257
  • 26 Kaneda M, Okano M, Hata K et al.. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting.  Nature. 2004;  429(6994) 900-903
  • 27 Klose R J, Bird A P. Genomic DNA methylation: the mark and its mediators.  Trends Biochem Sci. 2006;  31(2) 89-97
  • 28 Perche P Y, Robert-Nicoud M, Khochbin S, Vourc'h C. Nucleosome differentiation: role of histone H2A variants [in French].  Med Sci (Paris). 2003;  19(11) 1137-1145
  • 29 Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants H2AX and H2AZ.  Curr Opin Genet Dev. 2002;  12(2) 162-169
  • 30 Hake S B, Allis C D. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”.  Proc Natl Acad Sci U S A. 2006;  103(17) 6428-6435
  • 31 Phillips D M, Johns E W. A fractionation of the histones of group F2a from calf thymus.  Biochem J. 1965;  94 127-130
  • 32 Kornberg R D. Chromatin structure: a repeating unit of histones and DNA.  Science. 1974;  184(139) 868-871
  • 33 Kouzarides T. Chromatin modifications and their function.  Cell. 2007;  128(4) 693-705
  • 34 Marmorstein R, Trievel R C. Histone modifying enzymes: structures, mechanisms, and specificities.  Biochim Biophys Acta. 2009;  1789(1) 58-68
  • 35 Strahl B D, Allis C D. The language of covalent histone modifications.  Nature. 2000;  403(6765) 41-45
  • 36 Pogo B G, Allfrey V G, Mirsky A E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes.  Proc Natl Acad Sci U S A. 1966;  55(4) 805-812
  • 37 Allfrey V G, Faulkner R, Mirsky A E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis.  Proc Natl Acad Sci U S A. 1964;  51 786-794
  • 38 Sealy L, Chalkley R. DNA associated with hyperacetylated histone is preferentially digested by DNase I.  Nucleic Acids Res. 1978;  5(6) 1863-1876
  • 39 Hong L, Schroth G P, Matthews H R, Yau P, Bradbury E M. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA.  J Biol Chem. 1993;  268(1) 305-314
  • 40 Norton V G, Imai B S, Yau P, Bradbury E M. Histone acetylation reduces nucleosome core particle linking number change.  Cell. 1989;  57(3) 449-457
  • 41 Sims III R J, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function.  Trends Genet. 2003;  19(11) 629-639
  • 42 Parra M A, Wyrick J J. Regulation of gene transcription by the histone H2A N-terminal domain.  Mol Cell Biol. 2007;  27(21) 7641-7648
  • 43 Parra M A, Kerr D, Fahy D, Pouchnik D J, Wyrick J J. Deciphering the roles of the histone H2B N-terminal domain in genome-wide transcription.  Mol Cell Biol. 2006;  26(10) 3842-3852
  • 44 Weinberg M S, Villeneuve L M, Ehsani A et al.. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells.  RNA. 2006;  12(2) 256-262
  • 45 Han J, Kim D, Morris K V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells.  Proc Natl Acad Sci U S A. 2007;  104(30) 12422-12427
  • 46 Kim D H, Villeneuve L M, Morris K V, Rossi J J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells.  Nat Struct Mol Biol. 2006;  13(9) 793-797
  • 47 Köhler C, Villar C B. Programming of gene expression by Polycomb group proteins.  Trends Cell Biol. 2008;  18(5) 236-243
  • 48 Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis.  Cell. 2004;  116(1) 51-61
  • 49 Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance.  Trends Genet. 2004;  20(7) 320-326
  • 50 Payer B, Lee J T. X chromosome dosage compensation: how mammals keep the balance.  Annu Rev Genet. 2008;  42 733-772
  • 51 Huynh K D, Lee J T. X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny.  Nat Rev Genet. 2005;  6(5) 410-418
  • 52 Adler D A, Rugarli E I, Lingenfelter P A et al.. Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus.  Proc Natl Acad Sci U S A. 1997;  94(17) 9244-9248
  • 53 Lyon M F. Gene action in the X-chromosome of the mouse (Mus musculus L.)  Nature. 1961;  190 372-373
  • 54 Sharman G B. Late DNA replication in the paternally derived X chromosome of female kangaroos.  Nature. 1971;  230(5291) 231-232
  • 55 Cooper D W, VandeBerg J L, Sharman G B, Poole W E. Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation.  Nat New Biol. 1971;  230(13) 155-157
  • 56 Huynh K D, Lee J T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos.  Nature. 2003;  426(6968) 857-862
  • 57 Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse.  Nature. 1975;  256(5519) 640-642
  • 58 Sado T, Fenner M H, Tan S S, Tam P, Shioda T, Li E. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation.  Dev Biol. 2000;  225(2) 294-303
  • 59 Wang J, Mager J, Chen Y et al.. Imprinted X inactivation maintained by a mouse Polycomb group gene.  Nat Genet. 2001;  28(4) 371-375
  • 60 Heard E, Disteche C M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome.  Genes Dev. 2006;  20(14) 1848-1867
  • 61 Lifschytz E, Lindsley D L. The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation).  Proc Natl Acad Sci U S A. 1972;  69(1) 182-186
  • 62 Okamoto I, Arnaud D, Le Baccon P et al.. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice.  Nature. 2005;  438(7066) 369-373
  • 63 van der Heijden G W, Dieker J W, Derijck A A et al.. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote.  Mech Dev. 2005;  122(9) 1008-1022
  • 64 Tada T, Obata Y, Tada M et al.. Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth.  Development. 2000;  127(14) 3101-3105
  • 65 Norris D P, Patel D, Kay G F et al.. Evidence that random and imprinted Xist expression is controlled by preemptive methylation.  Cell. 1994;  77(1) 41-51
  • 66 Surani M A, Barton S C, Norris M L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.  Nature. 1984;  308(5959) 548-550
  • 67 McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes.  Cell. 1984;  37(1) 179-183
  • 68 Bartolomei M S, Zemel S, Tilghman S M. Parental imprinting of the mouse H19 gene.  Nature. 1991;  351(6322) 153-155
  • 69 Barlow D P, Stöger R, Herrmann B G, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus.  Nature. 1991;  349(6304) 84-87
  • 70 DeChiara T M, Robertson E J, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene.  Cell. 1991;  64(4) 849-859
  • 71 Wilkins J F, Haig D. What good is genomic imprinting: the function of parent-specific gene expression.  Nat Rev Genet. 2003;  4(5) 359-368
  • 72 Spahn L, Barlow D P. An ICE pattern crystallizes.  Nat Genet. 2003;  35(1) 11-12
  • 73 Obata Y, Kaneko-Ishino T, Koide T et al.. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis.  Development. 1998;  125(8) 1553-1560
  • 74 Davis T L, Yang G J, McCarrey J R, Bartolomei M S. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development.  Hum Mol Genet. 2000;  9(19) 2885-2894
  • 75 Ueda T, Abe K, Miura A et al.. The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development.  Genes Cells. 2000;  5(8) 649-659
  • 76 Li J Y, Lees-Murdock D J, Xu G L, Walsh C P. Timing of establishment of paternal methylation imprints in the mouse.  Genomics. 2004;  84(6) 952-960
  • 77 Lucifero D, Mann M R, Bartolomei M S, Trasler J M. Gene-specific timing and epigenetic memory in oocyte imprinting.  Hum Mol Genet. 2004;  13(8) 839-849
  • 78 Hiura H, Obata Y, Komiyama J, Shirai M, Kono T. Oocyte growth-dependent progression of maternal imprinting in mice.  Genes Cells. 2006;  11(4) 353-361
  • 79 Lee J T. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting?.  Curr Biol. 2003;  13(6) R242-R254
  • 80 Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer.  Semin Cell Dev Biol. 2003;  14(1) 93-100
  • 81 Nakamura T, Arai Y, Umehara H et al.. PGC7/Stella protects against DNA demethylation in early embryogenesis.  Nat Cell Biol. 2007;  9(1) 64-71
  • 82 Morgan H D, Sutherland H G, Martin D I, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse.  Nat Genet. 1999;  23(3) 314-318
  • 83 Lane N, Dean W, Erhardt S et al.. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse.  Genesis. 2003;  35(2) 88-93
  • 84 Maher E R, Afnan M, Barratt C L. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs?.  Hum Reprod. 2003;  18(12) 2508-2511
  • 85 Barker D J. Intrauterine programming of coronary heart disease and stroke.  Acta Paediatr Suppl. 1997;  423 178-182 discussion 183
  • 86 Doherty A S, Mann M R, Tremblay K D, Bartolomei M S, Schultz R M. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.  Biol Reprod. 2000;  62(6) 1526-1535
  • 87 Li T, Vu T H, Ulaner G A et al.. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch.  Mol Hum Reprod. 2005;  11(9) 631-640
  • 88 Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.  Biol Reprod. 2001;  64(3) 918-926
  • 89 Khosla S, Dean W, Reik W, Feil R. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype.  Hum Reprod Update. 2001;  7(4) 419-427
  • 90 Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2.  Biol Reprod. 2004;  70(6) 1790-1797
  • 91 Shao W J, Tao L Y, Xie J Y, Gao C, Hu J H, Zhao R Q. Exposure of preimplantation embryos to insulin alters expression of imprinted genes.  Comp Med. 2007;  57(5) 482-486

Carol A BrennerPh.D. 

Departments of Obstetrics & Gynecology and Physiology, CS Mott Center for Human Growth and Development, Wayne State University, School of Medicine

275 E. Hancock St., Detroit, MI 48201

Email: cbrenner@med.wayne.edu

    >