Aktuelle Urol 2009; 40(4): 221-230
DOI: 10.1055/s-0029-1224535
Übersicht

© Georg Thieme Verlag Stuttgart ˙ New York

Neue Biomarker und Anwendung multivariater Modelle zur Detektion des Prostatakarzinoms

New Biomarkers and Application of Multivariate Models for Detection of Prostate CancerC. Stephan1 , H. Cammann2 , H. Rittenhouse3 , M. Lein1 , 4 , F. Jentzmik1 , M. Schrader1 , S. Deger1 , K. Miller1 , K. Jung1 , 4
  • 1Klinik für Urologie, Charité – Universitätsmedizin Berlin
  • 2Institut für Medizinische Informatik, Charité – Universitätsmedizin Berlin
  • 3GenProbe Inc., San Diego, Californien, USA
  • 4Berliner Forschungsinstitut für Urologie, Berlin
Further Information

Publication History

Publication Date:
24 July 2009 (online)

Zusammenfassung

Molekulare Formen des prostataspezifischen ­Antigens (PSA) und des freien PSA (fPSA) wie das prozentuale freie PSA (%fPSA), proPSA, intaktes PSA oder das BPHA und andere neue Marker können die diagnostische Spezifität des PSA verbessern. Bei vielen der neuen Marker wie EPCA2 im Serum oder Annexin A3 (ANXA3) im Urin konnten die ersten guten Ergebnisse bisher noch nicht ­bestätigt werden bzw. es zeigte sich nur eine marginale Verbesserung der Spezifität. Andere Urinmarker wie das PCA3 oder das TMPRSS2-ERG Genfusionsprodukt haben das Potenzial, bevorzugt aggressive Tumoren zu entdecken und die Rate unnötiger Prostatabiopsien zu senken. Die Kombination dieser neuen Urinmarker mit etablierten Serummarkern könnte zukünftig eine weitere Spezifitätsverbesserung des Gesamt-PSA (tPSA) bewirken. Durch den Einsatz multivaria­ter Modelle wie z. B. artifizielle neuronale Netzwerke (ANN) oder auf logistischer Regression (LR) ­basierte Nomogramme, die eine kombinierte und gleichzeitige Bewertung verschiedener Marker ermöglichen, ist in dieser Hinsicht ein wei­terer Fortschritt zu erzielen. Diesen deutlichen Vorteil der multivariaten Bewertung gegenüber der Anwendung einzelner Parameter hat bereits die Nutzung des %fPSA innerhalb von ANN- und LR-Modellen gezeigt. In dieser Übersichtsarbeit werden neue Marker zur Detektion des Prostatakarzinoms (PCa) und deren Einsatz innerhalb multi­variater Modelle eingeschätzt.

Abstract

The specificity of PSA has been enhanced by using molecular forms of PSA and free PSA (fPSA) such as percent free PSA (%fPSA), proPSA, intact PSA or BPHA and / or new serum markers. Most of these promising new serum markers like EPCA2 or ANXA3 still lack confirmation of the outstanding initial results or show only marginally enhanced specificity at high sensitivity levels. PCA3, TMPRSS2-ERG, and other analytes in urine col­lect­ed after digital rectal examination with ap­pli­ca­tion of mild digital pressure have the potential to preferentially detect aggressive PCa and to ­decrease the number of unnecessary repeat biop­sies. The combination of these new urinary mark­ers with new and established serum markers seems to be most promising to further increase specificity of tPSA. Multivariate models, e. g., artificial neural networks (ANN) or logistic regression (LR) based nomograms have recently been per­formed by incorporating these new markers in several studies. There is generally an advantage to include the new markers and clinical data as additional parameters to PSA and %fPSA within ANN and LR models. Results of these studies and also unexpected pitfalls are discussed in this ­review.

Literatur

  • 1 Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008.  CA Cancer J Clin. 2008;  58 71-96
  • 2 Aus G, Damber J E, Khatami A et al. Individualized screening interval for prostate cancer based on prostate-specific antigen level: results of a prospective, randomized, population-based study.  Arch Intern Med. 2005;  165 1857-1861
  • 3 Postma R, Schroder F H, van Leenders G J et al. Cancer detection and cancer characteristics in the European Randomized Study of Screening for Prostate Cancer (ERSPC) – Section Rotterdam. A comparison of two rounds of screening.  Eur Urol. 2007;  52 89-97
  • 4 Thompson I M, Pauler D K, Goodman P J et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter.  N Engl J Med. 2004;  350 2239-2246
  • 5 Stamey T A, Caldwell M, McNeal J E et al. The prostate specific antigen era in the United States is over for prostate cancer: What happened in the last 20 years?.  J Urol. 2004;  172 1297-1301
  • 6 Schroder F H, Roobol M J, van der Kwast T H et al. Does PSA velocity predict prostate cancer in pre-screened populations?.  Eur Urol. 2006;  49 460-465
  • 7 Thompson I M, Ankerst D P, Chi C et al. Assessing prostate cancer risk: ­results from the Prostate Cancer Prevention Trial.  J Natl Cancer Inst. 2006;  98 529-534
  • 8 Berger A P, Deibl M, Strasak A et al. Large-scale study of clinical impact of PSA velocity: long-term PSA kinetics as method of differentiating men with from those without prostate cancer.  Urology. 2007;  69 134-138
  • 9 Loeb S, Roehl K A, Catalona W J et al. Prostate specific antigen velocity threshold for predicting prostate cancer in young men.  J Urol. 2007;  177 899-902
  • 10 Mistry K, Cable G. Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma.  J Am Board Fam Pract. 2003;  16 95-101
  • 11 Draisma G, Boer R, Otto S J et al. Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer.  J Natl Cancer Inst. 2003;  95 868-878
  • 12 Schroder F H, Hugosson J, Roobol M J et al. Screening and prostate-cancer mortality in a randomized European study.  N Engl J Med. 2009;  360 1320-1328
  • 13 Andriole G L, Grubb III R L, Buys S S et al. Mortality results from a randomized prostate-cancer screening trial.  N Engl J Med. 2009;  360 1310-1319
  • 14 Vis A N, Hoedemaeker R F, Roobol M et al. Tumor characteristics in screening for prostate cancer with and without rectal examination as an initial screening test at low PSA (0.0–3.9 ng / ml).  Prostate. 2001;  47 252-261
  • 15 Lilja H, Ulmert D, Vickers A J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring.  Nat Rev Cancer. 2008;  8 268-278
  • 16 Loeb S, Catalona W J. Prostate-specific antigen in clinical practice.  Cancer Lett. 2007;  249 30-39
  • 17 Schroder F H, Carter H B, Wolters T et al. Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics.  Eur Urol. 2008;  53 468-477
  • 18 Stephan C, Buker N, Cammann H et al. Artificial neural network (ANN) velocity better identifies benign prostatic hyperplasia but not prostate cancer compared with PSA velocity.  BMC Urol. 2008;  8 10
  • 19 Sardana G, Dowell B, Diamandis E P. Emerging Biomarkers for the Diagnosis and Prognosis of Prostate Cancer.  Clin Chem. 2008;  54 1951-1960
  • 20 Herawi M, Epstein J I. Immunohistochemical antibody cocktail staining (p63 / HMWCK / AMACR) of ductal adenocarcinoma and Gleason pattern 4 cribriform and noncribriform acinar adenocarcinomas of the prostate.  Am J Surg Pathol. 2007;  31 889-894
  • 21 Harden S V, Sanderson H, Goodman S N et al. Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies.  J Natl Cancer Inst. 2003;  95 1634-1637
  • 22 Reynolds M A, Kastury K, Groskopf J et al. Molecular markers for prostate cancer.  Cancer Lett. 2007;  249 5-13
  • 23 Wright J L, Lange P H. Newer potential biomarkers in prostate cancer.  Rev Urol. 2007;  9 207-213
  • 24 Laxman B, Morris D S, Yu J et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer.  Cancer Res. 2008;  68 645-649
  • 25 Vener T, Derecho C, Baden J et al. Development of a multiplexed urine assay for prostate cancer diagnosis.  Clin Chem. 2008;  54 874-882
  • 26 Reynolds M A. Molecular alterations in prostate cancer.  Cancer Lett. 2008;  271 13-24
  • 27 Tomlins S A, Rhodes D R, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.  Science. 2005;  310 644-648
  • 28 Tomlins S A, Laxman B, Dhanasekaran S M et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.  Nature. 2007;  448 595-599
  • 29 Demichelis F, Fall K, Perner S et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort.  Oncogene. 2007;  26 4596-4599
  • 30 Laxman B, Tomlins S A, Mehra R et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer.  Neoplasia. 2006;  8 885-888
  • 31 Groskopf J, Siddiqui J, Aubin S MJ et al. Feasibility and clinical utility of a TMPRSS2:ERG gene fusion urine test [Abstract].  Eur Urol Suppl. 2009;  8 195
  • 32 Morris D S, Tomlins S A, Montie J E et al. The discovery and application of gene fusions in prostate cancer.  BJU Int. 2008;  102 276-282
  • 33 Stenman U H, Leinonen J, Alfthan H et al. A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer.  Cancer Res. 1991;  51 222-226
  • 34 Lilja H, Christensson A, Dahlen U et al. Prostate-specific antigen in ­serum occurs predominantly in complex with alpha 1-antichymotrypsin.  Clin Chem. 1991;  37 1618-1625
  • 35 De Angelis G, Rittenhouse H G, Mikolajczyk S D et al. Twenty Years of PSA: From Prostate Antigen to Tumor Marker.  Rev Urol. 2007;  9 113-123
  • 36 Stenman U H, Abrahamsson P A, Aus G et al. Prognostic value of serum markers for prostate cancer.  Scand J Urol Nephrol Suppl. 2005;  (216) 64-81
  • 37 Stephan C, Jung K, Lein M et al. PSA and other tissue kallikreins for prostate cancer detection.  Eur J Cancer. 2007;  43 1918-1926
  • 38 Catalona W J, Smith D S, Wolfert R L et al. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening.  JAMA. 1995;  274 1214-1220
  • 39 Catalona W J, Partin A W, Slawin K M et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial.  JAMA. 1998;  279 1542-1547
  • 40 Zhang W M, Finne P, Leinonen J et al. Characterization and immunological determination of the complex between prostate-specific antigen and alpha2-macroglobulin.  Clin Chem. 1998;  44 2471-2479
  • 41 Zhang W M, Finne P, Leinonen J et al. Measurement of the complex ­between prostate-specific antigen and alpha1-protease inhibitor in ­serum.  Clin Chem. 1999;  45 814-821
  • 42 Allard W J, Zhou Z, Yeung K K. Novel immunoassay for the measurement of complexed prostate-specific antigen in serum.  Clin Chem. 1998;  44 1216-1223
  • 43 Brawer M K, Meyer G E, Letran J L et al. Measurement of complexed PSA improves specificity for early detection of prostate cancer.  Urology. 1998;  52 372-378
  • 44 Lein M, Kwiatkowski M, Semjonow A et al. A multicenter clinical trial on the use of complexed prostate specific antigen in low prostate specific antigen concentrations.  J Urol. 2003;  170 1175-1179
  • 45 Stephan C, Schnorr D, Loening S A et al. Re: Roddam AW, Duffy MJ, Hamdy FC et al. Use of prostate-specific antigen (PSA) isoforms for the ­detection of prostate cancer in men with a PSA level of 2–10 ng / ml: systematic review and meta-analysis.  Eur Urol. 2005;  48 386-99 1059-1060
  • 46 Mikolajczyk S D, Grauer L S, Millar L S et al. A precursor form of PSA (pPSA) is a component of the free PSA in prostate cancer serum.  Urology. 1997;  50 710-714
  • 47 Peter J, Unverzagt C, Krogh T N et al. Identification of precursor forms of free prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry.  Cancer Res. 2001;  61 957-962
  • 48 Bangma C H, Wildhagen M F, Yurdakul G et al. The value of (–7, –5)pro-prostate-specific antigen and human kallikrein-2 as serum markers for grading prostate cancer.  BJU Int. 2004;  93 720-724
  • 49 Lein M, Semjonow A, Graefen M et al. A multicenter clinical trial on the use of (–5, –7) pro prostate specific antigen.  J Urol. 2005;  174 2150-2153
  • 50 Stephan C, Meyer H A, Paul E M et al. Serum (–5, –7) proPSA for distinguishing stage and grade of prostate cancer.  Anticancer Res. 2007;  27 1833-1836
  • 51 Catalona W J, Bartsch G, Rittenhouse H G et al. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng / ml.  J Urol. 2003;  170 2181-2185
  • 52 Catalona W J, Bartsch G, Rittenhouse H G et al. Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng / ml prostate specific antigen.  J Urol. 2004;  171 2239-2244
  • 53 Sokoll L J, Wang Y, Feng Z et al. [–2]proenzyme prostate specific antigen for prostate cancer detection: a national cancer institute early detection research network validation study.  J Urol. 2008;  180 539-543
  • 54 Mikolajczyk S D, Rittenhouse H G. Pro PSA: a more cancer specific form of prostate specific antigen for the early detection of prostate cancer.  Keio J Med. 2003;  52 86-91
  • 55 Peyromaure M, Fulla Y, Debre B et al. Pro PSA: a “pro cancer” form of PSA?.  Med Hypotheses. 2005;  64 92-95
  • 56 Mikolajczyk S D, Millar L S, Wang T J et al. “BPSA”, a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia.  Urology. 2000;  55 41-45
  • 57 Wang T J, Slawin K M, Rittenhouse H G et al. Benign prostatic hyperplasia-associated prostate-specific antigen (BPSA) shows unique immunoreactivity with anti-PSA monoclonal antibodies.  Eur J Biochem. 2000;  267 4040-4045
  • 58 Canto E I, Singh H, Shariat S F et al. Serum BPSA outperforms both total PSA and free PSA as a predictor of prostatic enlargement in men without prostate cancer.  Urology. 2004;  63 905-910
  • 59 Linton H J, Marks L S, Millar L S et al. Benign prostate-specific antigen (BPSA) in serum is increased in benign prostate disease.  Clin Chem. 2003;  49 253-259
  • 60 Slawin K M, Shariat S, Canto E. BPSA: A novel serum marker for benign prostatic hyperplasia.  Rev Urol. 2005;  7 Suppl 8 S52-S56
  • 61 Stephan C, Cammann H, Deger S et al. BPHA (bPSA) improves detection of prostate cancer in an artificial neural network.  Urology. 2009;  , online available
  • 62 de Vries S H, Raaijmakers R, Blijenberg B G et al. Additional use of [–2] precursor prostate-specific antigen and “benign” PSA at diagnosis in screen-detected prostate cancer.  Urology. 2005;  65 926-930
  • 63 Mikolajczyk S D, Marks L S, Partin A W et al. Free prostate-specific antigen in serum is becoming more complex.  Urology. 2002;  59 797-802
  • 64 Nurmikko P, Vaisanen V, Piironen T et al. Production and characterization of novel anti-prostate-specific antigen (PSA) monoclonal antibodies that do not detect internally cleaved Lys145–Lys146 inactive PSA.  Clin Chem. 2000;  46 1610-1618
  • 65 Nurmikko P, Pettersson K, Piironen T et al. Discrimination of prostate cancer from benign disease by plasma measurement of intact, free prostate-specific antigen lacking an internal cleavage site at Lys145–Lys146.  Clin Chem. 2001;  47 1415-1423
  • 66 Steuber T, Nurmikko P, Haese A et al. Discrimination of benign from ­malignant prostatic disease by selective measurements of single chain, intact free prostate specific antigen.  J Urol. 2002;  168 1917-1922
  • 67 Chun F K, de la T A, van P H et al. Prostate Cancer Gene 3 (PCA3): Development and Internal Validation of a Novel Biopsy Nomogram.  Eur Urol. 2009;  , online available
  • 68 Yousef G M, Diamandis E P. The new human tissue kallikrein gene family: structure, function, and association to disease.  Endocr Rev. 2001;  22 184-204
  • 69 Lundwall A, Band V, Blaber M et al. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins.  Biol Chem. 2006;  387 637-641
  • 70 Kwiatkowski M K, Recker F, Piironen T et al. In prostatism patients the ratio of human glandular kallikrein to free PSA improves the discrimination between prostate cancer and benign hyperplasia within the diag­nostic “gray zone” of total PSA 4 to 10 ng / mL.  Urology. 1998;  52 360-365
  • 71 Partin A W, Catalona W J, Finlay J A et al. Use of human glandular kal­likrein 2 for the detection of prostate cancer: preliminary analysis.  ­Urology. 1999;  54 839-845
  • 72 Nakamura T, Scorilas A, Stephan C et al. The usefulness of serum human kallikrein 11 for discriminating between prostate cancer and benign prostatic hyperplasia.  Cancer Res. 2003;  63 6543-6546
  • 73 Rabien A, Fritzsche F, Jung M et al. High expression of KLK14 in prostatic adenocarcinoma is associated with elevated risk of prostate-specific antigen relapse.  Tumour Biol. 2008;  29 1-8
  • 74 Brown D A, Stephan C, Ward R L et al. Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific ­antigen improves prostate cancer diagnosis.  Clin Cancer Res. 2006;  12 89-96
  • 75 Stephan C, Xu C, Brown D A et al. Three new serum markers for prostate cancer detection within a percent free PSA-based artificial neural network.  Prostate. 2006;  66 651-659
  • 76 Meyer-Siegler K L, Bellino M A, Tannenbaum M. Macrophage migration inhibitory factor evaluation compared with prostate specific antigen as a biomarker in patients with prostate carcinoma.  Cancer. 2002;  94 1449-1456
  • 77 Michael A, Stephan C, Kristiansen G et al. Diagnostic validity of macrophage migration inhibitory factor in serum of patients with prostate cancer: a re-evaluation.  Prostate. 2005;  62 34-39
  • 78 Tahir S A, Ren C, Timme T L et al. Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer.  Clin Cancer Res. 2003;  9 3653-3659
  • 79 Tahir S A, Frolov A, Hayes T G et al. Preoperative serum caveolin-1 as a prognostic marker for recurrence in a radical prostatectomy cohort.  Clin Cancer Res. 2006;  12 4872-4875
  • 80 Paul B, Dhir R, Landsittel D et al. Detection of prostate cancer with a blood-based assay for early prostate cancer antigen.  Cancer Res. 2005;  65 4097-4100
  • 81 Leman E S, Cannon G W, Trock B J et al. EPCA-2: a highly specific serum marker for prostate cancer.  Urology. 2007;  69 714-720
  • 82 Diamandis E P. POINT: EPCA-2: a promising new serum biomarker for prostatic carcinoma?.  Clin Biochem. 2007;  40 1437-1439
  • 83 Leman E S, Magheli A, Cannon G W et al. Analysis of a second EPCA-2 epitope as a serum test for prostate cancer.  J Urol [Suppl]. 2008;  179 704
  • 84 Stattin P, Rinaldi S, Biessy C et al. High levels of circulating insulin-like growth factor-I increase prostate cancer risk: a prospective study in a population-based nonscreened cohort.  J Clin Oncol. 2004;  22 3104-3112
  • 85 Finne P, Auvinen A, Koistinen H et al. Insulin-like growth factor I is not a useful marker of prostate cancer in men with elevated levels of prostate-specific antigen.  J Clin Endocrinol Metab. 2000;  85 2744-2747
  • 86 Oliver S E, Holly J, Peters T J et al. Measurement of insulin-like growth factor axis does not enhance specificity of PSA-based prostate cancer screening.  Urology. 2004;  64 317-322
  • 87 Roddam A W, Allen N E, Appleby P et al. Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual ­patient data from 12 prospective studies.  Ann Intern Med. 2008;  149 461-468
  • 88 von der Kammer H, Jurincic-Winkler C, Horlbeck R. The potential use of prostatic secretory protein of 94 amino acid residues (PSP94) as a serum marker for prostatic tumor.  Urol Res. 1993;  21 227-233
  • 89 Nam R K, Reeves J R, Toi A et al. A novel serum marker, total prostate ­secretory protein of 94 amino acids, improves prostate cancer detection and helps identify high grade cancers at diagnosis.  J Urol. 2006;  175 1291-1297
  • 90 Reeves J R, Dulude H, Panchal C et al. Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy.  Clin Cancer Res. 2006;  12 6018-6022
  • 91 Wozny W, Schroer K, Schwall G P et al. Differential radioactive quantification of protein abundance ratios between benign and malignant prostate tissues: cancer association of annexin A3.  Proteomics. 2007;  7 313-322
  • 92 Kollermann J, Schlomm T, Bang H et al. Expression and prognostic relevance of Annexin A3 in prostate cancer.  Eur Urol. 2008;  54 1314-1323
  • 93 Schostak M, Schwall G P, Poznanovic S et al. Annexin A3 in Urine: A highly specific noninvasive marker for prostate cancer early detection.  J Urol. 2009;  181 343-353
  • 94 Hessels D, Klein Gunnewiek J M, van Oort I et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer.  Eur Urol. 2003;  44 8-15
  • 95 Groskopf J, Aubin S M, Deras I L et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer.  Clin Chem. 2006;  52 1089-1095
  • 96 Haese A, de la Taille A, van Poppel H et al. Clinical Utility of the PCA3 urine assay in european men scheduled for repeat biopsy.  Eur Urol. 2008;  54 1081-1088
  • 97 de la Taille A, Irani J, de Reijke T M et al. Can Prostate cancer gene (PCA3) predict initial biopsy outcome? [Abstract].  J Urol [Suppl]. 2009;  181 655 , 
  • 98 Nakanishi H, Groskopf J, Fritsche H A et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance.  J Urol. 2008;  179 1804-1809
  • 99 Whitman E J, Groskopf J, Ali A et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume.  J Urol. 2008;  180 1975-1978
  • 100 van Gils M P, Hessels D, Hulsbergen-van de Kaa C A et al. Detailed analysis of histopathological parameters in radical prostatectomy specimens and PCA3 urine test results.  Prostate. 2008;  68 1215-1222
  • 101 Schilling D A, Hennenlotter J, von Weyhern C H et al. Does the PCA3 score depend on tumor localization within the prostate? – A morphometric computer animated analysis.  J Urol [Suppl]. 2009;  181 655
  • 102 Varambally S, Laxman B, Mehra R et al. Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer.  Neoplasia. 2008;  10 1285-1294
  • 103 Sreekumar A, Poisson L M, Rajendiran T M et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.  Nature. 2009;  457 910-914
  • 104 Jung K. Re: The Metabolites Citrate, Myo-Inositol, and Spermine Are Potential Age-Independent Markers of Prostate Cancer in Human Expressed Prostatic Secretions.  European Urology. 2008;  54 1198-1199
  • 105 Chun F K, Karakiewicz P I, Briganti A et al. A critical appraisal of logistic regression-based nomograms, artificial neural networks, classification and regression-tree models, look-up tables and risk-group stratification models for prostate cancer.  BJU Int. 2007;  99 794-800
  • 106 Hernandez D J, Han M, Humphreys E B et al. Predicting the outcome of prostate biopsy: comparison of a novel logistic regression-based model, the prostate cancer risk calculator, and prostate-specific antigen level alone.  BJU Int. 2008;  , online available
  • 107 Shariat S F, Capitanio U, Jeldres C et al. Can nomograms be superior to other prediction tools?.  BJU Int. 2008;  , online available
  • 108 Chun F K, Graefen M, Briganti A et al. Initial biopsy outcome prediction--head-to-head comparison of a logistic regression-based nomogram versus artificial neural network.  Eur Urol. 2007;  51 1236-1240
  • 109 Finne P, Finne R, Bangma C et al. Algorithms based on prostate-specific antigen (PSA), free PSA, digital rectal examination and prostate volume reduce false-positive PSA results in prostate cancer screening.  Int J Cancer. 2004;  111 310-315
  • 110 Kawakami S, Numao N, Okubo Y et al. Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy.  Eur Urol. 2008;  54 601-611
  • 111 Djavan B, Remzi M, Zlotta A et al. Novel artificial neural network for early detection of prostate cancer.  J Clin Oncol. 2002;  20 921-929
  • 112 Finne P, Finne R, Auvinen A et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network.  Urology. 2000;  56 418-422
  • 113 Kalra P, Togami J, Bansal B SG et al. A neurocomputational model for prostate carcinoma detection.  Cancer. 2003;  98 1849-1854
  • 114 Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neu­ral network classification models: a methodology review.  J Biomed Inform. 2002;  35 352-359
  • 115 Sargent D J. Comparison of artificial neural networks with other statistical approaches.  Cancer. 2001;  91 1636-1642
  • 116 Chun F KH, Karakiewicz P I, Briganti A et al. Significance of PSA inter-assay variability on clinical prostate cancer detection-aids [Abstract].  J Urol [Suppl]. 2008;  179 722
  • 117 Stephan C, Meyer H A, Cammann H et al. Re: Chun FK-H, Graefen M, Briganti A, Gallina A, Hopp J, Kattan MW, Huland H, Karakiewicz PI. Initial biopsy outcome prediction – head-to-head comparison of a logistic regression-based nomogram versus artificial neural network.  Eur Urol. 2007;  51 1236-1243 1446-1447
  • 118 Snow P B, Smith D S, Catalona W J. Artificial neural networks in the diag­nosis and prognosis of prostate cancer: a pilot study.  J Urol. 1994;  152 1923-1926
  • 119 Babaian R J, Fritsche H, Ayala A et al. Performance of a neural network in detecting prostate cancer in the prostate-specific antigen reflex range of 2.5 to 4.0 ng / mL.  Urology. 2000;  56 1000-1006
  • 120 Stephan C, Jung K, Cammann H et al. An artificial neural network ­considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: Results of a 5-year ­investigation.  Int J Cancer. 2002;  99 466-473
  • 121 Stephan C, Cammann H, Meyer H A et al. PSA and new biomarkers within multivariate models to improve early detection of prostate cancer.  Cancer Lett. 2007;  249 18-29
  • 122 Schroder F, Kattan M W. The Comparability of Models for Predicting the Risk of a Positive Prostate Biopsy with Prostate-Specific Antigen Alone: A Systematic Review.  Eur Urol. 2008;  54 274-290
  • 123 Stephan C, Cammann H, Meyer H A et al. An artificial neural network for five different assay systems of prostate-specific antigen in prostate cancer diagnostics.  BJU Int. 2008;  102 799-805
  • 124 Stephan C, Xu C, Cammann H et al. Assay-specific artificial neural ­networks for five different PSA assays and populations with PSA 2–10 ng / ml in 4480 men.  World J Urol. 2007;  25 95-103
  • 125 Stephan C, Xu C, Finne P et al. Comparison of two different artificial neural networks for prostate biopsy indication in two different ­patient populations.  Urology. 2007;  70 596-601
  • 126 Keller T, Butz H, Lein M et al. Discordance analysis characteristics as a new method to compare the diagnostic accuracy of tests: example of complexed versus total prostate-specific antigen.  Clin Chem. 2005;  51 532-539
  • 127 Stephan C, Meyer H A, Kwiatkowski M et al. A (–5, –7) ProPSA based ­artificial neural network to detect prostate cancer.  Eur Urol. 2006;  50 1014-1020
  • 128 Stephan C, Kahrs A M, Cammann H et al. A [–2]proPSA-based artificial neural network significantly improves differentiation between prostate cancer and benign prostatic diseases.  Prostate. 2009;  69 198-207
  • 129 Vickers A J, Cronin A M, Aus G et al. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Goteborg, Sweden.  BMC Med. 2008;  6 19
  • 130 Emami N, Diamandis E P. Utility of kallikrein-related peptidases (KLKs) as cancer biomarkers.  Clin Chem. 2008;  54 1600-1607
  • 131 Parekh D J, Ankerst D P, Troyer D et al. Biomarkers for prostate cancer detection.  J Urol. 2007;  178 2252-2259
  • 132 Stephan C, Jung K, Soosaipillai A et al. Clinical utility of human glandular kallikrein 2 within a neural network for prostate cancer detection.  BJU Int. 2005;  96 521-527
  • 133 Stephan C, Meyer H A, Cammann H et al. Improved prostate cancer ­detection with a human kallikrein 11 and percentage free PSA-based artificial neural network.  Biol Chem. 2006;  387 801-805
  • 134 Scorilas A, Plebani M, Mazza S et al. Serum human glandular kallikrein (hK2) and insulin-like growth factor 1 (IGF-1) improve the discrimination between prostate cancer and benign prostatic hyperplasia in combination with total and %free PSA.  Prostate. 2003;  54 220-229
  • 135 Zhigang Z, Jieming L, Su L et al. Serum insulin-like growth factor I / free prostate specific antigen (IGF-I / fPSA) ratio enhances prostate cancer detection in men with total PSA 4.0–10.0 ng / ml.  J Surg Oncol. 2007;  96 54-61
  • 136 Aubin S M, Miick S, Williamsen S et al. Improved prediction of prostate biopsy outcome using PCA3, TMPRSS2:ERG gene fusion and serum PSA.  J Urol [Suppl]. 2008;  179 725
  • 137 Hessels D, Smit F P, Verhaegh G W et al. Detection of TMPRSS2-ERG ­fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer.  Clin Cancer Res. 2007;  13 5103-5108

PD Dr. C. Stephan

Klinik und Poliklinik für Urologie · Charité – Universitätsmedizin Berlin · CCM

Charitéplatz 1

10117 Berlin

Germany

Phone: +49 / 30 / 4 50 61 51 59

Fax: +49 / 30 / 4 50 51 59 04

Email: carsten.stephan@charite.de

>