Horm Metab Res 2009; 41(10): 778-784
DOI: 10.1055/s-0029-1224182
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Altered Hypothalamic-Pituitary-Adrenal Axis Activity in Patients with Chronic Heart Failure

E. V. Sivukhina1 , A. S. Poskrebysheva2 , Iu. V. Smurova2 , A. A. Dolzhikov3 , Iu. E.  Morozov4 , G. F. Jirikowski1 , V. Grinevich5
  • 1Department of Anatomy II, Friedrich-Schiller University, Jena, Germany
  • 2Department of Faculty Therapy, Russian State Medical University, Moscow, Russia
  • 3Department of Pathology, Regional Hospital, Belgorod, Russia
  • 4Regional Medical Expert Bureau of Medical Legal Examination, Kaliningrad, Russia
  • 5Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
Further Information

Publication History

received 04.03.2009

accepted 07.05.2009

Publication Date:
19 June 2009 (online)

Abstract

Neuroendocrine factors play an important role in the pathogenesis of chronic heart failure. Despite numerous clinical and experimental studies, the role of the hypothalamic-pituitary-adrenal axis and glucocorticoid hormones is not fully characterised. Here we present a study of plasma cortisol concentration in 74 chronic heart failure patients, divided into four groups based on NYHA functional classes I–IV, and in 17 control subjects. In parallel, we performed morphological analysis of the hypothalamic-pituitary-adrenal axis components from 8 male patients who had died from chronic heart failure, and 9 male controls. In our study we applied immunohistochemical method and quantitative analysis to investigate an expression of hypothalamic neurohormones (corticotropin-releasing hormone, vasopressin) and adrenocorticotropin hormone in the pituitary, as well as performed general histological examination of the adrenal cortex. Measurement of morning cortisol concentration in plasma of chronic heart failure patients revealed neither difference compared to controls nor with the severity of the disease. Despite this, a two-fold increase in the density of corticotropin-releasing hormone-immunoreactive neurons as well as a two-fold increase in the number of corticotropin-releasing hormone neurons co-expressing vasopressin in the hypothalamic paraventricular nucleus were found. In the anterior pituitary the density of adrenocorticotropin hormone-immunoreactive cells was significantly increased. General histological analysis of the adrenal cortex revealed a drastic thinning of the zona fasciculata and dystrophic changes in corticocytes. Structural changes, observed in the adrenal cortex, suggest a relative glucocorticoid deficiency, which may contribute to corticotropin-releasing hormone and adrenocorticotropin hormone upregulation in hypothalamus and pituitary of chronic heart failure patients.

References

  • 1 Sato Y, Miyamoto T, Taniguchi R, Nishio Y, Kita T, Fujiwara H, Takatsu Y. Current understanding of biochemical markers in heart failure.  Med Sci Moni. 2006;  12 RA252-RA264
  • 2 Packer M. How should physicians view heart failure?. The philosophical and physiological evolution of three conceptual models of disease.  Am J Cardiol. 1993;  71 3C-11C
  • 3 Francis GS. Pathophysiology of chronic heart failure.  Am J Med. 2001;  110 ((Suppl 7A)) 37S-46S
  • 4 Roig Minguell E. Clinical use of markers of neurohormonal activation in heart failure.  Rev Esp Cardiol. 2004;  57 347-356
  • 5 Scott LV, Dinan TG. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression.  Life Sci. 1998;  62 1985-1998
  • 6 Grinevich V, Ma X-M, Herman J, Jezova D, Akmayev I, Aguilera G. Effect of repeated lipopolysaccharide administration on tissue cytokine expression and hypothalamic-pituitary-adrenal axis activity in rats.  J Neuroendocrinol. 2001;  13 711-723
  • 7 Lightman SL, Windle RJ, Ma XM, Harbuz MS, Shanks NM, Julian MD, Wood SA, Kershaw YM, Ingram CD. Hypothalamic-pituitary-adrenal function.  Arch Physiol Biochem. 2002;  110 90-93
  • 8 Aguilera G. Regulation of pituitary ACTH secretion during chronic stress.  Front Neuroendocrinol. 1994;  15 321-350
  • 9 Bito K, Kubo S, Saimyoji H. Role of endocrine factors in chronic congestive heart failure, with emphasis on catecholamines.  Jpn Circ J. 1980;  44 117-127
  • 10 Moriyama Y, Yasue H, Yoshimura M, Mizuno Y, Nishiyama K, Tsunoda R, Kawano H, Kugiyama K, Ogawa H, Saito Y, Nakao K. The plasma levels of dehydroepiandrosterone sulfate are decreased in patients with chronic heart failure in proportion to the severity.  J Clin Endocrinol Metab. 2000;  85 1834-1840
  • 11 Lobzeva VI, Rylova AK, Zhemerikina EV, Novikov FE. Adaptive reserves of the myocardium in patients with ischemic heart disease.  Kardiologiia. 1990;  30 22-24
  • 12 Lu L, Li WM. Clinical significance of the function of adrenal cortex in refractory congestive heart failure.  Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003;  15 489-491
  • 13 Gallina S, Prosperino G, Di Giovanni P, Gaeta F, Di Napoli P, Gaeta MA, Muzii G, Barsotti A. The prognostic value of activation of the hypophyseal and adrenal cortical systems in severe heart failure.  Cardiologia. 1997;  42 77-82
  • 14 Emdin M, Passino C, Prontera C, Iervasi A, Ripoli A, Masini S, Zucchelli GC, Clerico A. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure.  Clin Chem Lab Med. 2004;  42 627-636
  • 15 Güder G, Bauersachs J, Frantz S, Weismann D, Allolio B, Ertl G, Angermann CE, Störk S. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure.  Circulation. 2007;  115 1754-1761
  • 16 Van Cauter E, Leproult R, Kupfer DJ. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol.  J Clin Endocrinol Metab. 1996;  81 2468-2473
  • 17 Kasatkina LV, Pivovarov VN, Markova EV, Salem S, Rossel's AN. Blood hormones in chronic ischemic heart disease and acute myocardial infarct.  Kardiologiia. 1979;  19 93-98
  • 18 Kang YM, Zhang ZH, Johnson RF, Yu Y, Beltz T, Johnson AK, Weiss RM, Felder RB. Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure.  Circ Res. 2006;  99 758-766
  • 19 Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB. Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure.  Am J Physiol Heart Circ Physiol. 2008;  295 H227-H236
  • 20 Sivukhina EV, Dolzhikov AA, Morozov IuE, Jirikowski GF, Grinevich V. Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic neurons in men.  Horm Metab Res. 2006;  38 382-390
  • 21 Ben-Barak Y, Russel JT, Whitnal MH, Ozato K, Gainer H. Neurophysin in the hypothalamo-neurohypophyseal system. I. Production and characterization of monoclonal antibodies.  J Neurosci. 1985;  5 81-97
  • 22 Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H. Neurophysin in the hypothalamo-neurohypophyseal system. II. Immunohistochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons.  J Neurosci. 1985;  5 98-109
  • 23 Goncharuk VD, Van Heerikhuize J, Swaab DF, Buijs RM. Paraventricular nucleus of the human hypothalamus in primary hypertension: activation of corticotropin-releasing hormone neurons.  J Comp Neurol. 2002;  443 321-331
  • 24 Irintchev A, Rollenhagen A, Troncoso E, Kiss JZ, Schachner M. Structural and functional aberrations in the cerebral cortex of tenascin-C deficient mice.  Cereb Cortex. 2005;  15 950-962
  • 25 Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF. Increased numbers of corticotrophin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients.  Neuroendocrinology. 1994;  60 436-444
  • 26 Purba JS, Raadsheer FC, Hofman MA, Ravid R, Polman CH, Kamphorst W, Swaab DF. Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis.  Neuroendocrinology.. 1995;  62 62-70
  • 27 Goncharuk VD, Buijs RM, Swaab DF. Corticotropin-releasing hormone neurons in hypertensive patients are activated in the hypothalamus but not in the brainstem.  J Comp Neurol. 2007;  503 148-168
  • 28 Lynd-Balta E, Pilcher WH, Joseph SA. Adrenocorticotropic hormone immunoreactivity in the hippocampal formation of temporal lobe epilepsy patients.  Epilepsia. 1996;  37 1081-1087
  • 29 Patel KP, Zhang PL, Krukoff TL. Alterations in brain hexokinase activity associated with heart failure in rats.  Am J Physiol. 1993;  265 R923-R928
  • 30 Zhang ZH, Francis J, Weiss RW, Felder RB. The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure.  Am J Physiol Heart Circ Physiol. 2002;  283 H423-H433
  • 31 Aguilera G, Pham Q, Rabadan-Diehl C. Regulation of pituitary vasopressin receptors during chronic stress: relationship to corticotroph responsiveness.  J Neuroendocrinol. 1994;  6 299-304
  • 32 Wand GS, Dobs AS. Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics.  J Clin Endocrinol Metab. 1991;  72 1290-1295
  • 33 Zych-Twardowska E, Wajgt A. Blood levels of selected hormones in patients with multiple sclerosis.  Med Sci Monit. 2001;  7 1005-1012
  • 34 Swaab DF, Raadsheer FC, Endert E, Hofman MA, Kamphorst W, Ravid R. Increased cortisol levels in aging and Alzheimer's disease in postmortem cerebrospinal fluid.  J Neuroendocrinol. 1994;  6 681-687
  • 35 Raadsheer FC, Oorschot DE, Verwer RW, Tilders FJ, Swaab DF. Age-related increase in the total number of corticotropin-releasing hormone neurons in the human paraventricular nucleus in controls and Alzheimer's disease: comparison of the disector with an unfolding method.  J Comp Neurol. 1994;  339 447-457
  • 36 Dickstein G, Shechner C, Nicholson WE, Rosner I, Shen-Orr Z, Adawi F, Lahav M. Adrenocorticotropin stimulation test: effects of basal cortisol level, time of day, and suggested new sensitive low dose test.  J Clin Endocrinol Metab. 1991;  72 773-778
  • 37 Silva TS, Longui CA, Faria CD, Rocha MN, Melo MR, Faria TG, de Souza E, Almeida JA, Hayashi LF, Kater CE. Impact of prolonged physical training on the pituitary glucocorticoid sensitivity determined by very low dose intravenous dexamethasone suppression test.  Horm Metab Res. 2008;  40 718-721
  • 38 Torpy DJ, Ho JT. Value of free cortisol measurement in systemic infection.  Horm Metab Res. 2007;  39 439-444

Correspondence

Dr. V. GrinevichM.D., Ph.D 

Group Leader

Department of Molecular Neurobiology

Max-Planck-Institute for Medical Research

Jahnstrasse 29

69120 Heidelberg

Germany

Phone: +49 6221 486 174 (office)

Phone: +49 6221 486 128 (lab)

Fax: +49 6221 486 110

Email: Valery.Grinevich@mpimf-heidelberg.mpg

    >