Abstract
The aim of this study was to evaluate Achilles tendon (AT) in type 2 diabetic patients
with vs. without peripheral neuropathy using Magnetic Resonance Imaging (MRI). The
study included 19 patients (group A, mean age 63.9±7.4 years) with peripheral neuropathy
and 19 patients (group B, mean age 63.6±6.1 years) without peripheral neuropathy,
as well as 16 healthy controls (group C, mean age 61.6±8.4 years). Neuropathy was
diagnosed by the Diabetic Neuropathy Index (DNI). The maximum AT thickness and AT
volume were measured on sagittal T1 weighted MRI images. AT volume was calculated by the sum of the tendon surface area
of all contiguous sections multiplied by the slice thickness. Diabetic patients had
significantly (p<0.001) greater AT volume than controls (9742.0±2034.9 mm3 vs. 7323.8±1918.2 mm3). This difference was observed both in men (p=0.030) and in women (p<0.001). AT volume
was significantly greater in group A vs. C (p=0.003) and in group B vs. C (p<0.001),
but there was no difference between groups A and B (p=0.469). Finally, in group A
increased AT volume was significantly (p=0.041) associated with clinical severity
of neuropathy.
Conclusions Type 2 diabetic patients have increased AT volume as compared to controls. There
is no difference in AT volume between patients with and without neuropathy. However,
in neuropathic patients increased AT volume is associated with severity of neuropathy.
Key words
Achilles tendon - diabetes mellitus - diabetic foot - diabetic neuropathy - MRI -
volume measurements
References
- 1
Akturk M, Ozdemir A, Maral I. et al .
Evaluation of Achilles tendon thickening in type 2 diabetes mellitus.
Exp Clin Endocrinol Diabetes.
2007;
115
92-96
- 2
Batista F, Nery C, Pinzur M. et al .
Achilles tendinopathy in diabetes mellitus.
Foot Ankle Int.
2008;
29
498-501
- 3
Boulton AJM, Kirsner RS, Vileikyte L.
Neuropathic diabetic foot ulcers.
N Engl J Med.
2004;
351
48-55
- 4
Boulton AJ, Vinik AI, Arezzo JC. et al .
Diabetic neuropathies: a statement by the American Diabetes Association.
Diabetes Care.
2005;
28
956-962
- 5
Cameron NE, Gibson TM, Nangle MR. et al .
Inhibitors of advanced glycation end product formation and neurovascular dysfunction
in experimental diabetes.
Ann NY Acad Sci.
2005;
1043
784-792
- 6
Cumbie BC, Hermayer KL.
Current concepts in targeted therapies for the pathophysiology of diabetic microvascular
complications.
Vasc Health Risk Manag.
2007;
3
823-832
- 7
Dussault RG, Kaplan PA, Roederer G.
MR imaging of Achilles tendon in patients with familial hyperlipidemia: comparison
with plain films, physical examination and patients with traumatic tendon lesions.
Am J Roentgenol.
1995;
164
403-407
- 8
Edmonds M.
The diabetic foot, 2003.
Diabetes Metab Res Rev.
2004;
20
((Suppl 1))
S9-S12
- 9
Feldman EL, Stevens MJ, Thomas PK. et al .
A practical two-step quantitative clinical and electrophysiological assessment for
the diagnosis and staging of diabetic neuropathy.
Diabetes Care.
1994;
17
1281-1289
- 10
Giacomozzi C, Caselli A, Macellari V. et al .
Walking strategy in diabetic patients with peripheral neuropathy.
Diabetes Care.
2002;
25
1451-1457
- 11
Giacomozzi C, D’Ambrogi E, Uccioli L. et al .
Does the thickening of Achilles tendon and plantar fascia contribute to the alteration
of diabetic foot loading?.
Clin Biomech.
2005;
20
532-539
- 12
Grant WP, Sullivan R, Sonenshine DE. et al .
Electron microscopic investigation of the effects of diabetes mellitus on the Achilles
tendon.
J Foot Ankle Surg.
1997;
36
272-278
- 13
Haims AH, Schweitzer ME, Patel RS. et al .
MR imaging of the Achilles tendon: overlap of findings in symptomatic and asymptomatic
individuals.
Skeletal Radiol.
2000;
29
640-645
- 14
Movin T, Kristoffersen-Wiberg M, Rolf C. et al .
MR imaging in chronic Achilles tendon disorder.
Acta Radiol.
1998;
39
126-132
- 15
Mueller MJ, Maluf KS.
Tissue adaptation to physical stress: a proposed “Physical Stress Theory” to guide
physical therapist practice, education, and research.
Phys Ther.
2002;
82
383-403
- 16
Nishimoto GS, Attinger CE, Cooper PS.
Lengthening the Achilles tendon for the treatment of diabetic plantar forefoot ulceration.
Surg Clin North Am.
2003;
83
707-726
- 17
Papanas N, Papatheodorou K, Christakidis. et al .
Evaluation of a new indicator test for sudomotor function (Neuropad®) in the diagnosis of peripheral neuropathy in type 2 diabetic patients.
Exp Clin Endocrinol Diabetes.
2005;
113
195-198
- 18
Papanas N, Gries A, Maltezos E. et al .
The steel ball-bearing test: a new test for evaluating protective sensation in the
diabetic foot.
Diabetologia.
2006;
49
739-743
- 19
Papanas N, Maltezos E.
The diabetic foot: established and emerging treatments.
Acta Clin Belg.
2007;
62
230-238
- 20
Reddy GK.
Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness
in rabbit achilles tendon.
Exp Diabesity Res.
2004;
5
143-153
- 21 Reiber GE, Ledoux WR. Epidemiology of diabetic foot ulcers and complications: evidence
for prevention. In: Williams R, Herman W, Kinmoth AL, Wareham NJ (Eds)
the evidence base for diabetes care. Chichester: Wiley 2002: 641-665
- 22
Seifarth CC, Hinkmann C, Hahn EG. et al .
Reduced frequency of peripheral dendritic cells in type 2 diabetes.
Exp Clin Endocrinol Diabetes.
2008;
116
162-166
- 23
Tentolouris N, Achtsidis V, Marinou K. et al .
Evaluation of the self-administered indicator plaster Neuropad for the diagnosis of
neuropathy in diabetes.
Diabetes Care.
2008;
31
236-237
- 24
van Schie CH, Vermigli C, Carrington AL. et al .
Muscle weakness and foot deformities in diabetes: relationship to neuropathy and foot
ulceration in caucasian diabetic men.
Diabetes Care.
2004;
27
1668-1673
- 25
van Schie CH.
A review of the biomechanics of the diabetic foot.
Int J Low Extrem Wounds.
2005;
4
160-170
- 26
Várkonyi T, Kempler P.
Diabetic neuropathy: new strategies for treatment.
Diabetes Obes Metab.
2008;
10
99-108
- 27
Veves A, Manes C, Murray HJ. et al .
Painful neuropathy and foot ulceration in diabetic patients.
Diabetes Care.
1993;
16
1187-1189
- 28
Ziegler D, Siekierka-Kleiser E, Meyer B. et al .
Validation of a novel screening device (NeuroQuick) for quantitative assessment of
small fiber dysfunction as an early feature of diabetic polyneuropathy.
Diabetes Care.
2005;
28
1169-1174
- 29
Zimny S, Pfohl M.
Healing times and prediction of wound healing in neuropathic diabetic foot ulcers:
a prospective study.
Exp Clin Endocrinol Diabetes.
2005;
113
90-93
Correspondence
Dr. N. Papanas
G. Kondyli 22
Alexandroupolis 68100
Greece
Telefon: +3025510 84972
Fax: +3025510 74723
eMail: papanasnikos@yahoo.gr