Horm Metab Res 2009; 41(10): 767-772
DOI: 10.1055/s-0029-1220751
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Factors in Serum from Type 2 Diabetes Patients Can Cause Cellular Insulin Resistance

F. Renström1 , J. Burén1 , M. K. Svensson1 , 2 , J. W. Eriksson1 , 2 , 3
  • 1Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, Umeå, Sweden
  • 2Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
  • 3AstraZeneca R & D, Mölndal, Sweden
Further Information

Publication History

received 17.10.2008

accepted 09.04.2009

Publication Date:
03 June 2009 (online)

Abstract

This pilot study was aimed to investigate whether there are humoral factors in serum from type 2 diabetic subjects that, in addition to glucose, insulin and free fatty acids are able to induce or contribute to peripheral insulin resistance with respect to glucose transport. Isolated subcutaneous adipocytes from 11 type 2 diabetic subjects and 10 nondiabetic controls were incubated for 24-h in medium supplemented with 25% serum from a control or a type 2 diabetic donor, in the presence of a low (5 mM) or a high (15 mM) glucose concentration, respectively. After the incubation period glucose uptake capacity was assessed. Serum from type 2 diabetic donors, compared to serum from controls, significantly reduced the maximal insulin effect to stimulate glucose uptake (∼40%, p<0.05) in adipocytes from control subjects, independent of surrounding glucose concentrations. Glucose uptake capacity in adipocytes isolated from type 2 diabetic subjects was similar regardless of culture condition. No significant alterations were found in cellular content of key proteins in the insulin signaling cascade (insulin receptor substrate-1 and -2, and glucose transporter 4) that could explain the impaired insulin-stimulated glucose transport in control adipocytes incubated with serum from type 2 diabetic donors. The present findings indicate the presence of biomolecules in the circulation of type 2 diabetic subjects, apart from glucose, insulin, and free fatty acids with the ability to induce peripheral insulin resistance. This further implies that even though normoglycemia is achieved other circulating factors can still negatively affect insulin sensitivity in type 2 diabetic patients.

References

  • 1 Buren J, Lindmark S, Renström F, Eriksson JW. In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients: is cellular insulin resistance caused by glucotoxicity in vivo?.  Metabolism. 2003;  52 239-245
  • 2 Zierath JR, Galuska D, Nolte LA, Thorne A, Kristensen JS, Wallberg-Henriksson H. Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance.  Diabetologia. 1994;  37 270-277
  • 3 Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity.  Diabetes Care. 1990;  13 610-630
  • 4 Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. Production of insulin resistance by hyperinsulinaemia in man.  Diabetologia. 1985;  28 70-75
  • 5 Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes.  J Clin Invest. 1995;  96 1261-1268
  • 6 Renström F, Buren J, Svensson M, Eriksson JW. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes.  Metabolism. 2007;  56 190-198
  • 7 Lundgren M, Eriksson JW. No in vitro effects of fatty acids on glucose uptake, lipolysis or insulin signaling in rat adipocytes.  Horm Metab Res. 2004;  36 203-209
  • 8 Buren J, Liu HX, Jensen J, Eriksson JW. Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes.  Eur J Endocrinol. 2002;  146 419-429
  • 9 Smith U, Sjöström L, Björnstorp P. Comparison of two methods for determining human adipose cell size.  J Lipid Res. 1972;  13 822-824
  • 10 Renström F, Buren J, Eriksson JW. Insulin receptor substrates-1 and -2 are both depleted but via different mechanisms after down-regulation of glucose transport in rat adipocytes.  Endocrinology. 2005;  146 3044-3051
  • 11 Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction.  Metabolism. 1978;  27 1893-1902
  • 12 Garvey WT, Olefsky JM, Marshall S. Insulin induces progressive insulin resistance in cultured rat adipocytes. Sequential effects at receptor and multiple postreceptor sites.  Diabetes. 1986;  35 258-267
  • 13 Lindmark S, Buren J, Eriksson JW. Insulin resistance, endocrine function and adipokines in type 2 diabetes patients at different glycaemic levels: potential impact for glucotoxicity in vivo.  Clin Endocrinol (Oxf). 2006;  65 301-309
  • 14 Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R. Role of macrophage tissue infiltration in metabolic diseases.  Curr Opin Clin Nutr Metab Care. 2005;  8 347-354
  • 15 Forouhi NG, Sattar N, MacKeigue PM. Relation of C-reactive protein to body fat distribution and features of the metabolic syndrome in Europeans and South Asians.  Int J Obes Relat Metab Disord. 2001;  25 1327-1331
  • 16 Pannacciulli N, Cantatore FP, Minenna A, Bellacicco M, Giorgino R, De Pergola G. C-reactive protein is independently associated with total body fat, central fat, and insulin resistance in adult women.  Int J Obes Relat Metab Disord. 2001;  25 1416-1420
  • 17 Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor.  Proc Natl Acad Sci USA. 1994;  91 4854-4858
  • 18 Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects.  J Biol Chem. 2003;  278 45777-45784
  • 19 Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.  J Clin Invest. 1995;  95 2409-2415
  • 20 Green A, Dobias SB, Walters DJ, Brasier AR. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase.  Endocrinology. 1994;  134 2581-2588
  • 21 Ryden M, Dicker A, van Harmelen V, Hauner H, Brunnberg M, Perbeck L, Lönnqvist F, Arner P. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells.  J Biol Chem. 2002;  277 1085-1091
  • 22 Paysant J, Blanque R, Vasse M, Soria C, Soria J, Gardner CR. Factors influencing the effect of the soluble IL-6 receptor on IL-6 responses in HepG2 hepatocytes.  Cytokine. 2000;  12 774-779
  • 23 Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes.  Diabetes. 2002;  51 3391-3399
  • 24 Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.  Nat Med. 2002;  8 1288-1295
  • 25 Faraj M, Lu HL, Cianflone K. Diabetes, lipids, and adipocyte secretagogues.  Biochem Cell Biol. 2004;  82 170-190
  • 26 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 27 Van Epps-Fung M, Williford J, Wells A, Hardy RW. Fatty acid-induced insulin resistance in adipocytes.  Endocrinology. 1997;  138 4338-4345
  • 28 Rumberger JM, Peters  T, Burrington C, Green A. Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes.  Diabetes. 2004;  53 2535-2541
  • 29 Green A, Basile R, Rumberger JM. Transferrin and iron induce insulin resistance of glucose transport in adipocytes.  Metabolism. 2006;  55 1042-1045
  • 30 Amatruda JM, Livingston JN, Lockwood DH. Cellular mechanisms in selected states of insulin resistance: human obesity, glucocorticoid excess, and chronic renal failure.  Diabetes Metab Rev. 1985;  1 293-317
  • 31 Dinneen S, Alzaid A, Miles J, Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans.  J Clin Invest. 1993;  92 2283-2290
  • 32 Saad MJ, Folli F, Araki E, Hashimoto N, Csermely P, Kahn CR. Regulation of insulin receptor, insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-F442A adipocytes. Effects of differentiation, insulin, and dexamethasone.  Mol Endocrinol. 1994;  8 545-557
  • 33 Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction.  Diabetes. 2000;  49 1700-1708
  • 34 Lundgren M, Buren J, Ruge T, Myrnas T, Eriksson JW. Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes.  J Clin Endocrinol Metab. 2004;  89 2989-2997
  • 35 Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation.  J Biol Chem. 1997;  272 29911-29918
  • 36 Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance.  Sci STKE. 2005;  2005 pe4
  • 37 Danielsson A, Ost A, Nyström FH, Strälfors P. Attenuation of insulin-stimulated insulin receptor substrate-1 serine 307 phosphorylation in insulin resistance of type 2 diabetes.  J Biol Chem. 2005;  280 34389-34392
  • 38 Danielsson A, Ost A, Lystedt E, Kjolhede P, Gustavsson J, Nyström FH, Strålfors P. Insulin resistance in human adipocytes occurs downstream of IRS1 after surgical cell isolation but at the level of phosphorylation of IRS1 in type 2 diabetes.  FEBS J. 2005;  272 141-151
  • 39 Smith U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance – is insulin resistance initiated in the adipose tissue?.  Int J Obes Relat Metab Disord. 2002;  26 897-904
  • 40 Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.  Nature. 2005;  436 356-362
  • 41 Yang RZ, Lee MJ, Hu H, Pollin TI, Ryan AS, Nicklas BJ, Snitker S, Horenstein RB, Hull K, Goldberg NH, Goldberg AP, Shuldiner AR, Fried SK, Gong DW. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications.  PLoS Med. 2006;  3 e287
  • 42 Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance.  Proc Natl Acad Sci USA. 2003;  100 7265-7270
  • 43 Bluher M, Unger R, Rassoul F, Richter V, Paschke R. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or Type II diabetes.  Diabetologia. 2002;  45 210-216
  • 44 Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA. Activation of SOCS-3 by resistin.  Mol Cell Biol. 2005;  25 1569-1575
  • 45 Ishibashi KI, Imamura T, Sharma PM, Huang J, Ugi S, Olefsky JM. Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes.  J Clin Invest. 2001;  107 1193-1202
  • 46 Lopez-Bermejo A, Khosravi J, Fernandez-Real JM, Hwa V, Pratt KL, Casamitjana R, Garcia-Gil MM, Rosenfeld RG, Ricart W. Insulin resistance is associated with increased serum concentration of IGF-binding protein-related protein 1 (IGFBP-rP1/MAC25).  Diabetes. 2006;  55 2333-2339

Correspondence

Dr. F. Renström

Department of Public Health and Clinical Medicine

Umeå University Hospital

6M, 4th floor

901 85 Umeå

Sweden

Phone: +46/90/785 14 89

Fax: +46/90/785 44 00

Email: frida.renstrom@medicin.umu.se

    >