References and Notes
<A NAME="RY00310ST-1A">1a</A>
Nicolaou KC.
Snyder SA.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
11929
<A NAME="RY00310ST-1B">1b</A>
Shenvi RA.
O’Malley
DP.
Baran PS.
Acc. Chem. Res.
2009,
42:
530
<A NAME="RY00310ST-2A">2a</A>
Mohr JT.
Krout MR.
Stoltz BM.
Nature (London)
2008,
455:
323
<A NAME="RY00310ST-2B">2b</A>
Grondal C.
Jeanty M.
Enders D.
Nature
Chem.
2010,
2:
167
<A NAME="RY00310ST-2C">2c</A>
Woodward RB.
Bader
FE.
Bickel H.
Frey AJ.
Kierstead RW.
J. Am. Chem. Soc.
1956,
78:
2023
<A NAME="RY00310ST-2D">2d</A>
Corey EJ.
Angew. Chem. Int. Ed.
2002,
41:
1650
<A NAME="RY00310ST-2E">2e</A>
Dounay AB.
Overman LE.
Chem. Rev.
2003,
103:
2945
<A NAME="RY00310ST-3A">3a</A>
Newman DJ.
Cragg GM.
J. Nat. Prod.
2007,
70:
461
<A NAME="RY00310ST-3B">3b</A>
Stereochemical
Aspects of Drug Action and Disposition
Eichelbaum M.
Testa B.
Somogyi A.
Springer;
Berlin:
2003.
<A NAME="RY00310ST-3C">3c</A>
Kumar K.
Waldmann H.
Angew. Chem. Int. Ed.
2009,
48:
3224
<A NAME="RY00310ST-4A">4a</A>
Quaternary Stereocenters. Challenges and Solutions
in Organic Synthesis
Christoffers J.
Baro A.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RY00310ST-4B">4b</A>
Douglas CJ.
Overman LE.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5363
<A NAME="RY00310ST-4C">4c</A>
Trost BM.
Chunhui J.
Synthesis
2006,
369
<A NAME="RY00310ST-4D">4d</A>
Bella M.
Gasperi T.
Synthesis
2009,
1583
<A NAME="RY00310ST-5A">5a</A>
Lin H.
Danishefsky SJ.
Angew.
Chem. Int. Ed.
2003,
42:
36
<A NAME="RY00310ST-5B">5b</A>
Marti C.
Carreira EM.
Eur. J. Org. Chem.
2003,
2209
<A NAME="RY00310ST-5C">5c</A>
Galliford CV.
Scheidt KA.
Angew. Chem.
Int. Ed.
2007,
46:
8748
<A NAME="RY00310ST-6A">6a</A>
Venkatesan H.
Davis MC.
Altas Y.
Snyder D.
Liotta C.
J. Org. Chem.
2001,
66:
3653
<A NAME="RY00310ST-6B">6b</A>
Lo MM.-C.
Neumann CS.
Nagayama S.
Perlstein EO.
Schreiber SL.
J. Am. Chem. Soc.
2004,
126:
16077
<A NAME="RY00310ST-6C">6c</A>
Kotha S.
Deb AC.
Lahiri K.
Manivannan E.
Synthesis
2009,
165 ; and references cited therein
<A NAME="RY00310ST-6D">6d</A>
Lik K.-C,
So S.-S,
Zhang J, and
Zhang Z. inventors; WO 2006/136606.
<A NAME="RY00310ST-6E">6e</A>
Liu J.-J, and
Zhang Z. inventors; WO 2008/055812.
Selected examples:
<A NAME="RY00310ST-7A">7a</A>
Madin A.
O’Donnell CJ.
Oh T.
Old DW.
Overman LE.
Sharp MJ.
J. Am. Chem. Soc.
2005,
127:
18054
<A NAME="RY00310ST-7B">7b</A>
Trost BM.
Zhang Y.
J. Am. Chem. Soc.
2007,
129:
14548
<A NAME="RY00310ST-7C">7c</A>
Kündig EP.
Seidel TM.
Jia Y.
Bernardinelli G.
Angew.
Chem. Int. Ed.
2007,
46:
8484
<A NAME="RY00310ST-7D">7d</A>
Ma S.
Han X.
Krishnan S.
Virgil SC.
Stoltz BM.
Angew.
Chem. Int. Ed.
2009,
48:
8037
Selected examples:
<A NAME="RY00310ST-8A">8a</A>
Lee TBK.
Wong GSK.
J.
Org. Chem.
1991,
56:
872
<A NAME="RY00310ST-8B">8b</A>
Hills ID.
Fu G.
Angew. Chem. Int.
Ed.
2003,
42:
3921
<A NAME="RY00310ST-8C">8c</A>
Ogawa S.
Shibata N.
Inagaki J.
Nakamura S.
Toru T.
Shiro M.
Angew. Chem. Int. Ed.
2007,
46:
8666
<A NAME="RY00310ST-8D">8d</A>
Tian X.
Jiang K.
Peng J.
Du W.
Chen Y.-C.
Org.Lett.
2008,
10:
3583
<A NAME="RY00310ST-8E">8e</A>
Chen X.-H.
Wei Q.
Luo S.-W.
Xiao H.
Gong L.-Z.
J. Am. Chem. Soc.
2009,
131:
13819
<A NAME="RY00310ST-8F">8f</A>
Bencivenni G.
Wu L.-Y.
Mazzanti A.
Giannichi B.
Pesciaioli F.
Song M.-P.
Bartoli G.
Melchiorre P.
Angew. Chem. Int. Ed.
2009,
48:
7200
For selected examples on the catalytic
construction of adjacent quaternary and tertiary chiral centers,
see:
<A NAME="RY00310ST-9A">9a</A>
Austin JF.
Kim S.-G.
Sinz CJ.
Xiao W.-J.
MacMillan DWC.
Proc. Natl. Acad. Sci.
U.S.A.
2004,
101:
5482
<A NAME="RY00310ST-9B">9b</A>
Li H.
Wang Y.
Tang L.
Wu F.
Liu X.
Guo C.
Foxman BM.
Deng L.
Angew.
Chem. Int. Ed.
2005,
44:
105
<A NAME="RY00310ST-9C">9c</A>
Lalonde MP.
Chen Y.
Jacobsen EN.
Angew. Chem. Int. Ed.
2006,
45:
6366
<A NAME="RY00310ST-9D">9d</A>
Bartoli G.
Bosco M.
Carlone A.
Cavalli A.
Locatelli M.
Mazzanti A.
Ricci P.
Sambri L.
Melchiorre P.
Angew.
Chem. Int. Ed.
2006,
45:
4966
<A NAME="RY00310ST-9E">9e</A>
Streuff J.
White DE.
Virgil SC.
Stoltz BM.
Nature
Chem.
2010,
2:
192
<A NAME="RY00310ST-10A">10a</A>
Galzerano P.
Bencivenni G.
Pesciaioli F.
Mazzanti A.
Giannichi B.
Sambri L.
Bartoli G.
Melchiorre P.
Chem.
Eur. J.
2009,
15:
7846
<A NAME="RY00310ST-10B">10b</A>
Bui T.
Syed S.
Barbas CF.
J.
Am. Chem. Soc.
2009,
131:
8758
<A NAME="RY00310ST-10C">10c</A>
Kato Y.
Furutachi M.
Chen Z.
Mitsunuma H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2009,
131:
9168
<A NAME="RY00310ST-10D">10d</A>
He R.
Shirakawa S.
Maruoka K.
J.
Am. Chem. Soc.
2009,
131:
16620
For recent examples on the catalytic,
asymmetric addition of oxindoles to vinyl sulfones and vinyl ketones,
generating a single, quaternary stereocenter:
<A NAME="RY00310ST-11A">11a</A>
He R.
Ding C.
Maruoka K.
Angew.
Chem. Int. Ed.
2009,
48:
4559
<A NAME="RY00310ST-11B">11b</A>
Li X.
Xi Z.-G.
Luo S.
Cheng J.-P.
Org. Biomol. Chem.
2010,
8:
77
<A NAME="RY00310ST-12A">12a</A>
Bartoli G.
Melchiorre P.
Synlett
2008,
1759
<A NAME="RY00310ST-12B">12b</A>
Chen Y.-C.
Synlett
2008,
1919
For the first use of primary amines in iminium catalysis
with enones, see:
<A NAME="RY00310ST-12C">12c</A>
Martin NJA.
List B.
J.
Am. Chem. Soc.
2006,
128:
13368
For the first demonstration that catalysts A or B can be used in iminium-enamine
cascades of enones, see:
<A NAME="RY00310ST-12D">12d</A>
Wang X.
Reisinger CM.
List B.
J.
Am. Chem. Soc.
2008,
130:
6070
Selected examples:
<A NAME="RY00310ST-13A">13a</A>
Xie J.-W.
Chen W.
Li R.
Zeng M.
Du W.
Yue L.
Chen Y.-C.
Wu Y.
Zhu J.
Deng
J.-G.
Angew.
Chem. Int. Ed.
2007,
46:
389
<A NAME="RY00310ST-13B">13b</A>
Bartoli G.
Bosco M.
Carlone A.
Pesciaioli F.
Sambri L.
Melchiorre P.
Org. Lett.
2007,
9:
1403
<A NAME="RY00310ST-13C">13c</A>
Chen W.
Du W.
Duan Y.
Wu Y.
Yang S.-Y.
Chen Y.-C.
Angew. Chem.
Int. Ed.
2007,
46:
7667
<A NAME="RY00310ST-13D">13d</A>
Zhang E.
Fan C.-A.
Tu Y.-Q.
Zhang F.-M.
Song Y.-L.
J. Am.
Chem. Soc.
2009,
131:
14626
<A NAME="RY00310ST-13E">13e</A>
Wu L.-Y.
Bencivenni G.
Mancinelli M.
Mazzanti A.
Bartoli G.
Melchiorre P.
Angew. Chem. Int. Ed.
2009,
48:
7196
<A NAME="RY00310ST-13F">13f</A>
Galzerano P.
Pesciaioli F.
Mazzanti A.
Bartoli G.
Melchiorre P.
Angew.
Chem. Int. Ed.
2009,
48:
7892
<A NAME="RY00310ST-14">14</A>
Bordwell FG.
Fried HE.
J. Org. Chem.
1991,
56:
4218
<A NAME="RY00310ST-15">15</A>
Crystallographic data have been deposited
with the Cambridge Crystallographic Data Centre, accession number CCDC
771490(4), and are available free of charge
via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RY00310ST-16">16</A> For an example of catalytic and
enantioselective O-to-C rearrangements of O-acylated benzofuranone
derivatives, see ref. 8b. For an early example, see:
Black TH.
Arrivo SM.
Schumm JS.
Knobeloch JM.
J. Chem. Soc., Chem. Commun.
1986,
1524
<A NAME="RY00310ST-17">17</A>
General Procedure
All
the reactions were carried out with no precautions to exclude moisture
in undistilled toluene. In an ordinary vial equipped with a magnetic
stir bar, amine A or B (0.02
mmol, 6.5 mg, 10 mol%) and benzoic acid (0.04 mmol, 4.9
mg, 20 mol%) were dissolved in toluene (1 mL). After stirring
at r.t. for 10 min, the cyclic enones 2 (0.2
mmol) was added, followed by the addition of oxindole 1 or benzofuranone 5 (0.24
mmol, 1.2 equiv). The vial was sealed, and the mixture stirred for
1 d at r.t. The crude mixture was diluted with CH2Cl2 and
flushed through a short plug of silica, using CH2Cl2-EtOAc
(1:1) as the eluent. Solvent was removed in vacuo, and the Michael
adduct 3 or 6 was
purified by flash column chromatography (silica gel, hexane-EtOAc).
All new compounds gave satisfactory spectroscopic and analytical
data. As a typical example, the data of the compound 3a are
given.
(
R
)-
tert
-Butyl 3-Benzyl-2-oxo-3-[(
S
)-3-oxocyclohexyl]-indoline-1-carboxylate
(3a, Entry 1, Table 2)
Isolated as a mixture of diastereomers
(5.2:1 dr) by column chromatography (hexane-acetone = 90:10)
in 80% yield. The ee (96% ee) was determined by
HPLC on a chiral stationary phase [Chiralpak AD-H; hexane-i-PrOH (98:2); 0.50 mL/min; λ = 214,
254 nm; t
R = 34.1
min(major), 41.7 min (minor, based on
the racemic mixture)]; [α]D
rt -17.37
(c 0.98, CHCl3, dr = 5.2:1,
96% ee). ¹H NMR (400 MHz, CDCl3): δ = 1.47-1.64
(m, 2 H), 1.55 (s, 9 H), 1.70-1.81 (m, 1 H), 1.97-2.12
(m, 1 H), 2.15-2.32 (m, 1 H), 2.32-2.50 (m, 2
H), 2.55-2.61 (m, 2 H), [CH2 A-B type
spectrum (3.04, d, 1 H, J
gem = -12.8
Hz), (3.30, d, 1 H, J
gem = -12.8
Hz)], 6.72-6.77 (m, 2 H), 6.93-7.06 (m,
3 H), 7.13-7.31 (m, 3 H), 7.52-7.57 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 25.1 (CH2), 26.4
(CH2), 28.3 (3× CH3), 41.4 (CH2),
42.2 (CH2), 43.0 (CH2), 46.2 (CH), 57.4 (C),
84.3 (C), 115.0 (CH), 123.6 (CH), 124.4 (CH), 126.9 (CH), 127.9
(CH), 128.6 (CH), 129.3 (C), 130.0 (CH), 135.1 (C), 140.3 (C), 148.8
(C), 177.2 (C), 210.6 (C). HRMS (EI): m/z calcd
for C26H29NO4: 419.2096; found: 419.2092.