Synlett 2010(10): 1567-1571  
DOI: 10.1055/s-0029-1219927
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Carbamates from Amines and Dialkyl Carbonates: Influence of Leaving and Entering Groups

Pietro Tundo*a,b, C. Robert McElroya, Fabio Aricòa,b
a Consorzio Interuniversitario ‘La Chimica per l’Ambiente’, Interuniversity Consortium ‘Chemistry for the Environment’, Via delle Industrie 21/8, 30175 Marghera, Venice, Italy
b Ca’ Foscari Università di Venezia, Dipartimento Scienze Ambientali, Dorsoduro 2137, 30123 Venice, Italy
Fax: +39(041)2348620; e-Mail: tundop@unive.it;
Further Information

Publication History

Received 28 January 2010
Publication Date:
10 May 2010 (online)

Abstract

A number of carbamates were synthesised through a halogen-free process by reacting amines with symmetrical and unsymmetrical carbonates. The results obtained showed a specific trend of preferred leaving groups (in the dialkyl carbonates) depending on whether a catalyst or a base was used. On the other hand, investigations conducted on the preferred entering groups (amines) for the synthesis of carbamates showed the same trend regardless of whether a catalyst or a base was used. Finally, in accordance with the results obtained, it was possible to synthesise sterically hindered carbamates in high yield by transesterification of methyl carbamate with a sterically hindered alcohol.

    References and Notes

  • 1a Tai-Teh W. Huang J. Arrington N. Dill G. J. Agric. Food Chem.  1987,  35:  817 
  • 1b Rivetti F, Romano U, and Sasselli M. inventors; US Pat.  4514339.  1985
  • 1c Kato T. Suzuki K. Takahashi J. Kamoshita K. J. Pestic. Sci.  1984,  9:  489 
  • 1d Aresta M. Quaranta E. Chem. Tech.  1997,  3:  32 
  • 1e Greene T. Wuts P. Protective Groups in Organic Synthesis   3rd ed.:  Wiley; New York: 1999. 
  • 2a Babad H. Zieler A. Chem. Rev.  1973,  73:  75 
  • 2b Eckert H. Foster B. Angew. Chem., Int. Ed. Engl.  1987,  26:  894 
  • 2c Costarca L. Delogu P. Nardelli A. Sunjic V. Synthesis  1996,  533 
  • 3a Aresta M. Giannoccaro P. Tommasi I. J. Organomet. Chem.  1994,  476:  13 
  • 3b Valli V. Alper H. J. Org. Chem.  1995,  60:  257 
  • 3c Butler D. Alper H. Chem. Commun.  1998,  2575 
  • 3d Yoshida M. Hara N. Okuyama S. Chem. Commun.  2000,  151 
  • 4 Li Y. Zhao X. Wang Y. Appl. Catal., A  2005,  279:  205 
  • 5a Cai Q. Lu B. Guo L. Shan Y. Catal. Commun.  2009,  10:  605 
  • 5b Almusaiteer K. Catal. Commun.  2009,  10:  1127 
  • 6 Tundo P. Bressanello S. Loris A. Sathicq G. Pure Appl. Chem.  2005,  77:  1719 
  • 7a Selva M. Tundo P. Perosa A. Tetrahedron Lett.  2002,  43:  1217 
  • 7b Selva M. Tundo P. Perosa A. J. Org. Chem.  2001,  66:  667 
  • 7c Zhou H. Shi F. Tian X. Ahang Q. Deng Y. J. Mol. Catal. A  2007,  271:  89 
  • 7d Curini M. Epifano F. Maltese F. Rosati O. Tetrahedron Lett.  2002,  43:  4895 
  • 7e Sima T. Guo S. Shi F. Deng Y. Tetrahedron Lett.  2002,  43:  8145 
  • 8a Gupte S. Shivarkar A. Shivarkar A. Chem. Commun.  2001,  2620 
  • 8b Chaudhari R. Gupte S. Chaudhari R.
    J. Mol. Catal. A  2004,  223:  85 
  • 9 Tundo P. Arico F. Rosamilia A. Rigo M. Maranzana A. Tonachini G. Pure Appl. Chem.  2009,  81:  1971 
  • 13 Gresser MJ. Jencks WP. J. Am. Chem. Soc.  1977,  99:  6963 
  • 16 Tundo P. Selva M. Acc. Chem. Res.  2002,  35:  706 
10

General procedure for the reaction of unsymmetrical carbonates with (2-phenylethyl)amine (Table  [¹] and Table  [²] ): In a 25 mL round-bottom flask, the amine (9.30 mmol) and the carbonate (18.50 mmol) were added, followed by either zinc acetate (0.46 mmol) or potassium tert-butoxide (2.30 mmol). The reaction mixture was heated to 60 ˚C with continuous agitation. Samples were taken at regular time intervals and analysed by ¹H NMR spectroscopy (see Supporting Information).

11

General procedure for the reaction of symmetrical carbonates with (2-phenylethyl)amine (Table  [³] and Table  [4] ). In a 25 mL round-bottom flask, the amine (9.30 mmol), DMC (18.50 mmol) and the carbonate (18.50 mmol) were added, followed by either zinc acetate (0.46 mmol) or potassium tert-butoxide (2.30 mmol). The reaction mixture was heated to 60 ˚C with continuous agitation. Samples were taken at regular time intervals and analysed by ¹H NMR spectroscopy (see Supporting Information).

12

General procedure for the reaction of amines with dimethyl carbonate (Table  [5] and Table  [6] ). In a 25 mL round-bottom flask, phenyl ethyl amine (4.65 mmol) the selected amine (4.65 mmol) and DMC (18.50 mmol) were added, followed by either zinc acetate (0.460 mmol) or potassium tert-butoxide (1.60 mmol). The solution was heated to 60 ˚C with continuous agitation. Samples were taken at regular time intervals and analysed by ¹H NMR spectroscopy (see Supporting Information).

14

General procedure for the transesterification of a urethane with an alcohol Table  [7] : In a 25 mL round-bottom flask, the urethane (9.30 mmol) and the alcohol (93.00 mmol) were added, followed by potassium tert-butoxide (11.60 mmol). The contents were heated to 60 ˚C with continuous agitation. Samples were taken at regular time intervals and analysed by ¹H NMR spectroscopy.

15

General procedure for the transesterification of methyl carbamates with alcohols (Table  [7] ). In a 25 mL round-bottom flask, the selected methyl carbamate (9.30 mmol) and the selected alcohols (93.00 mmol) were added, followed by potassium tert-butoxide (11.60 mmol). The solution was heated to the relevant temperature with continuous agitation. Samples were taken at regular time intervals and analysed by ¹H NMR spectroscopy (see Supporting Information).