Synlett 2010(5): 707-711  
DOI: 10.1055/s-0029-1219363
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Thieme Chemistry Journal Awardees - Where Are They Now? Bifunctional Organocatalysis with N-Formyl-l-Proline: A Novel Approach to Epoxide Ring Opening and Sulfide Oxidation

Shengwei Wei, Kerstin A. Stingl, Katharina M. Weiß, Svetlana B. Tsogoeva*
Department of Chemistry and Pharmacy, Chair of Organic Chemistry I, University of Erlangen-Nuremberg, Henkestr. 42, 91054 Erlangen, Germany
Fax: +49(9131)8526865; e-Mail: tsogoeva@chemie.uni-erlangen.de;
Further Information

Publication History

Received 9 October 2009
Publication Date:
08 February 2010 (online)

Abstract

A conceptually distinct approach to the aminolysis of 1,2-epoxides, which involves Lewis base-Brønsted acid catalysis employing N-formyl-l-proline as an easily accessible bifunctional organocatalyst and water as a solvent is presented. The potential of N-formyl-l-proline as organocatalyst for the sulfide oxidation reaction using aqueous hydrogen peroxide as environmentally benign and readily available oxidant is also demonstrated. Good to high yields are achieved for both reactions.

    References and Notes

  • 1a Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 ; Angew. Chem. 2004, 116, 5248
  • 1b Tian SK. Chen Y. Hang J. Tang L. McDaid P. Deng L. Acc. Chem. Res.  2004,  37:  621 
  • 1c Miller SJ. Acc. Chem. Res.  2004,  37:  601 
  • 2a Jagtap SB. Tsogoeva SB. Chem. Commun.  2006,  4747 
  • 2b Baudequin C. Chaturvedi D. Tsogoeva SB. Eur. J. Org. Chem.  2007,  2623 
  • 2c

    Stingl, K., Tsogoeva,
    S. B. unpublished results.

  • 3a Wu S. Takeya R. Eto M. Tomizawa C. J. Pestic. Sci.  1987,  12:  221 
  • 3b Corey EJ. Bakshi RK. Shibata S. Chen CP. Singh VK. J. Am. Chem. Soc.  1987,  109:  7925 
  • 3c Rogers GA. Parson SM. Anderson DC. Nilsson LM. Bhar BA. Kornreich WD. Kaufman R. Jacobs RS. Kirtman B. J. Med. Chem.  1989,  32:  1217 
  • 3d Auvin-Guette C. Rebuffat S. Prigent Y. Bodo B.
    J. Am. Chem. Soc.  1992,  114:  2170 
  • 3e Takehara J. Hashiguchi S. Fujii A. Inoue SI. Ikaria T. Nayori R. Chem. Commun.  1996,  233 
  • 3f Ager DJ. Prakash I. Schaad DR. Chem. Rev.  1996,  96:  835 
  • 3g Bergmeier SC. Tetrahedron  2000,  56:  2561 
  • 3h Lee H.-S. Kang SH. Synlett  2004,  1673 
  • 4 For excellent review on metal-mediated ring-opening reactions of epoxides, see: Schneider C. Synthesis  2006,  3919 
  • For selected recent examples, see, for Sc(OTf)3:
  • 5a Schneider C. Sreekanth AR. Mai E. Angew. Chem. Int. Ed.  2004,  43:  5691 ; Angew. Chem. 2004, 116, 5809
  • 5b Placzek AT. Donelson JL. Trivedi R. Gibbs RA. De S K. Tetrahedron Lett.  2005,  46:  9029 
  • For LiClO4:
  • 5c Heydari A. Mehrdad M. Maleki A. Ahmadi N. Synthesis  2004,  1563 
  • 5d Azizi N. Saidi MR. Can. J. Chem.  2005,  83:  505 
  • For LiBr:
  • 5e Chakraborti AK. Rudrawar S. Kondaskar A. Eur. J. Org. Chem.  2004,  3597 
  • 5f Babic A. Sova M. Gobec S. Pecar S. Tetrahedron Lett.  2006,  47:  1733 
  • For Al(OTf)3:
  • 5g Fringuelli F. Pizzo F. Tortoioli S. Vaccaro L. J. Org. Chem.  2004,  69:  7745 
  • 5h Williams DBG. Lawton M. Tetrahedron Lett.  2006,  47:  6557 
  • For BiCl3:
  • 5i McCluskey A. Leitch SK. Garner J. Caden CE. Hill TA. Odell LR. Stewart SG. Tetrahedron Lett.  2005,  46:  8229 
  • For Bi(OTf)3 and Bi(TFA)3:
  • 5j Khodaei MM. Khosropour AR. Ghozati K. Tetrahedron Lett.  2004,  45:  3525 
  • For CoCl2:
  • 5k Sundararajan G. Vijayakrishna K. Varghese B. Tetrahedron Lett.  2004,  45:  8253 
  • For Cu(BF4)2:
  • 5l Kamal A. Ramu R. Azhar MA. Khanna GBR. Tetrahedron Lett.  2005,  46:  2675 
  • 5m Yarapathy VR. Mekala S. Rao BV. Tammishetti S. Catal. Commun.  2006,  7:  466 
  • For K5CoW12O40˙3H2O and (NH4)8[CeW10O36]˙20H2O:
  • 5n Mirkhani V. Tangestaninejad S. Yadollahi B. Alipanah L. Catal. Lett.  2005,  101:  93 
  • 5o Rafiee E. Tangestaninejad S. Habibi MH. Mirkhani V. Synth. Commun.  2004,  34:  3673 
  • For [Cr(salen)Cl]:
  • 5p Bartoli G. Bosco M. Carlone A. Locatelli M. Massaccesi M. Melchiorre Sambri L. Org. Lett.  2004,  6:  2173 
  • 5q Kureshy RI. Sing S. Khan N. Abdi SHR. Agrawal S. Jasra RV. Tetrahedron: Asymmetry  2006,  17:  1638 
  • 6 Ranu BC. Jana U. J. Org. Chem.  1998,  63:  8212 
  • 7a Fan R.-H. Hou X.-L. J. Org. Chem.  2003,  68:  726 
  • 7b Wu J. Xia H.-G. Green Chem.  2005,  7:  708 
  • 7c Surendra K. Krishnaveni NS. Rao KR. Synlett  2005,  506 
  • 7d Kleiner CM. Schreiner PR. Chem. Commun.  2006,  4315 
  • 7e Fleming EM. Quigley C. Rozas I. Connon SJ. J. Org. Chem.  2008,  73:  948 
  • 7f Connon SJ. Synlett  2009,  354 
  • 7g Rajesh Krishnan G. Sreekumar K. Polymer  2008,  49:  5233 
  • For examples of aminolysis of 1,2-epoxides in the absence of any catalyst, see:
  • 7h Azizi M. Saidi MR. Org. Lett.  2005,  7:  3649 
  • 7i Bonollo S. Fringuelli F. Pizzo F. Vaccaro L. Green Chem.  2006,  8:  960 
  • 7j Desai H. D’Souza BR. Foether D. Johnson BF. Lindsay HA. Synthesis  2007,  902 
  • For excellent reviews on water as a solvent, see:
  • 8a Li C.-J. Chen L. Chem. Soc. Rev.  2006,  35:  68 
  • 8b Herrerías CI. Yao XQ. Li ZP. Li C.-J. Chem. Rev.  2007,  107:  2546 
  • 8c Dallinger D. Kappe CO. Chem. Rev.  2007,  107:  2563 
  • 8d Chanda A. Fokin VV. Chem. Rev.  2009,  109:  725 
  • 8e Gruttadauria M. Giacalone F. Noto R. Adv. Synth. Catal.  2009,  351:  33 
  • 8f Paradowska J. Stodulski M. Mlynarski J. Angew. Chem. Int. Ed.  2009,  48:  4288 ; Angew. Chem. 2009, 121, 4352
  • 8g

    For ring opening in water, see also ref. 7a-d,h,i.

  • 9a Carreño MC. Chem. Rev.  1995,  95:  1717 
  • 9b Fernández I. Khiar N. Chem. Rev.  2003,  103:  3651 
  • For selected examples, see:
  • 10a Di Furia F. Modena G. Seraglia R. Synthesis  1984,  325 
  • 10b Pitchen P. Duñach E. Desmukh MN. Kagan HB. J. Am. Chem. Soc.  1984,  106:  8188 
  • 10c Palucki M. Hanson P. Jacobsen EN. Tetrahedron Lett.  1992,  33:  7111 
  • 10d Komatsu N. Hashizume M. Sugita T. Uemura S. J. Org. Chem.  1993,  58:  4529 
  • 10e Bolm C. Bienewald F. Angew. Chem., Int. Ed. Engl.  1995,  34:  2640 ; Angew. Chem. 1995, 107, 2883
  • 10f Kokubo C. Katsuki T. Tetrahedron  1996,  52:  13895 
  • 10g Lattanzi A. Bonadies F. Senatore A. Soriente A. Scettri A. Tetrahedron: Asymmetry  1997,  8:  2473 
  • 10h Gunaratne HQN. McKervey MA. Feutren S. Finlay J. Boyd J. Tetrahedron Lett.  1998,  39:  5655 
  • 10i Legros J. Bolm C. Angew. Chem. Int. Ed.  2004,  43:  4225 ; Angew. Chem. 2004, 116, 4321
  • 10j Drago C. Caggiano L. Jackson RFW. Angew. Chem. Int. Ed.  2005,  44:  7221 ; Angew. Chem. 2005, 117, 7387
  • 10k Legros J. Bolm C. Chem. Eur. J.  2005,  11:  1086 
  • 10l Mba M. Prins LJ. Licini G. Org. Lett.  2007,  9:  21 
  • 10m Egami H. Katsuki T. J. Am. Chem. Soc.  2007,  129:  8940 
  • 10n Zeng Q.-L. Tang H.-Y. Zhang S. Liu J.-C. Chin. J. Chem.  2008,  26:  1435 
  • 10o Sahoo S. Kumar P. Lefebvre F. Halligudi SB. J. Catal.  2009,  262:  111 
  • For metal-free procedures of sulfoxidation, see:
  • 11a Tohma H. Takizawa S. Watanabe H. Fukuoka Y. Maegawa T. Kita Y. J. Org. Chem.  1999,  64:  3519 
  • 11b Bethell D. Page PCB. Vahedi H. J. Org. Chem.  2000,  65:  6756 
  • 11c Imada Y. Iida H. Ono S. Murahashi S.-I. J. Am. Chem. Soc.  2003,  125:  2868 
  • 11d Salgaonkar PD. Shukla VG. Akamanchi KG. Synth. Commun.  2005,  35:  2805 
  • 11e Hong-Bing J. Xiao-Fang H. Dong-Po S. Zhong L. Russ. J. Org. Chem.  2006,  42:  959 
  • 11f Baxová L. Cibulka R. Hampl F. J. Mol. Catal. A: Chem.  2007,  277:  53 
  • 11g Shi F. Tse MK. Kaiser HM. Beller M. Adv. Synth. Catal.  2007,  349:  2425 
  • 11h del Río RE. Wang B. Achab S. Bohé L. Org. Lett.  2007,  9:  2265 
  • 11i Golchoubian H. Hosseinpoor F. Molecules  2007,  12:  304 
  • 11j Xiong Z.-G. Zhang J. Hu X.-M. Appl. Catal., A  2008,  334:  44 
  • 11k Russo A. Lattanzi A. Adv. Synth. Catal.  2009,  351:  521 
  • 13a Overman LE. Flippin LA. Tetrahedron Lett.  1981,  22:  195 
  • 13b Woodgate PD. Singh Y. Rickard CEF.
    J. Organomet. Chem.  1998,  560:  197 
  • 13c Periasamy M. Kumar NS. Sivakumar S. Rao VD. Ramanathan CR. Venkatraman L. J. Org. Chem.  2001,  66:  3828 
  • 13d Carrée F. Gil R. Collin J. Org. Lett.  2005,  7:  1023 
  • 13e Kureshy RI. Singh S. Khan NH. Abdi SHR. Agrawal S. Mayani VJ. Jasra RV. Tetrahedron Lett.  2006,  47:  5277 
  • 13f Bonollo S. Fringuelli F. Pizzo F. Vaccaro L. Synlett  2008,  1574 
  • 13g Kureshy RI. Prathap KJ. Agrawal S. Khan NH. Abdi SHR. Jasra RV. Eur. J. Org. Chem.  2008,  18:  3118 
  • 13h Hosseini-Sarvari M. Can. J. Chem.  2008,  86:  65 
12

General Procedure for the Aminolysis of 1,2-Epoxides A mixture of epoxide (0.31 mmol, 1 equiv), amine (2 equiv), and N-formyl-l-proline (0.1 equiv) in H2O (150 µL) was stirred at r.t. for 24 or 48 h. The reaction mixture was diluted with H2O (1.5 mL) and extracted with CH2Cl2 (3 × 2 mL). The combined organic layers were washed with brine (2 mL), dried (Na2SO4), and the solvent was removed under reduced pressure. The residue was purified by chromatog-raphy (SiO2, PE-EtOAc) to provide the desired β-amino alcohols in yields given in Table  [²] . Products from the entries 1-5 and 7-13 are known compounds. Their constitution was ascertained by comparison of spectroscopic data with reported literature data.7h, ¹³ β-Amino alcohol from entry 6 is a new compound, and its characterization data are reported below.
¹H NMR (300 MHz, DMSO-d 6): δ = 7.26 (t, 1 H, J = 7.5 Hz), 6.29-6.35 (m, 2 H), 5.65 (br s., 1 H), 3.24-3.45 (m, 2 H), 2.23 (s, 3 H), 1.85-1.96 (m, 2 H), 1.60-1.63 (m, 2 H), 1.08-1.22 (m, 4 H) ppm. ¹³C NMR (75 MHz, DMSO-d 6):
δ = 158.33, 154.56, 137.41, 110.26, 105.50, 73.21, 56.18, 34.20, 30.97, 24.13, 23.71 ppm. MS (MALDI): m/z = 207 [M + H]+; the exact molecular mass m/z = 206.1419 ± 1.7 ppm [M+] was confirmed by HRMS (EI, 70 eV).

14

A Typical Procedure for the Oxidation of Methyl Phenyl Sulfide To a solution of catalyst (0.048 mmol) in a solvent (500 µL) methyl phenyl sulfide (0.242 mmol) was added at r.t. To this mixture 30% H2O2 (29.6 µL, 1.2 equiv) was added in one portion and stirred for 24 h at r.t. After quenching the reaction with Na2SO3, the conversion was determined by GC analysis using hexadecane 99% (30 µL) as internal standard. The yield of isolated product was obtained directly by column chromatography (PE-EtOAc, 1:1). The isolated methyl phenyl sulfoxide was identified through comparison of ¹H NMR spectra with literature data. See ref. 10g,k,m.