Synlett 2010(5): 790-792  
DOI: 10.1055/s-0029-1219350
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Solvent-Free Anti-Markovnikov Addition of Thiols to Alkenes Using Anhydrous Cerium(III) Chloride as Catalyst

Claudio C. Silveira*, Samuel R. Mendes, Francieli M. Líbero
Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
Fax: +55(55)32208754; e-Mail: silveira@quimica.ufsm.br;
Further Information

Publication History

Received 18 September 2009
Publication Date:
25 January 2010 (online)

Abstract

The anti-Markovnikov addition of thiols to alkenes using CeCl3 as catalyst is described. The products were obtained in good to excellent yields. The reaction occurred under solvent-free conditions at room temperature.

    References and Notes

  • 1a Peach ME. Thiols as Nucleophiles, In The Chemistry of the Thiol Group   Patai S. John Wiley & Sons; London: 1979.  p.721 
  • 1b Organic Sulfur Chemistry   Oae S. CRC Press; Boca Raton: 1991. 
  • 2 Cremlyn RJ. An Introduction to Organo-Sulfur Chemistry   Wiley & Sons; New York: 1996. 
  • 3 Curran DP. In Comprehensive Organic Synthesis   Vol. 4:  Trost BM. Fleming I. Pergamon; New York: 1991.  p.715 
  • Protic acids:
  • 4a Posner T. Ber. Dtsch. Chem. Ges.  1905,  38:  646 
  • 4b Screttas CG. Micha-Screttas M. J. Org. Chem.  1979,  44:  713 
  • 4c Wolf F. Finke H. Z. Chem.  1972,  12:  180 
  • Lewis acids:
  • 5a Mukaiyama T. Izawa T. Saigo K. Takai H. Chem. Lett.  1973,  355 
  • 5b Belley M. Zamboni R.
    J. Org. Chem.  1989,  54:  1230 
  • 5c Kanagasabapathy S. Sudalai A. Benicewicz BC. Tetrahedron Lett.  2001,  42:  3791 
  • 6 Kumar P. Pandey RK. Hedge VR. Synlett  1999,  1921 
  • 7 Banerjee S. Das J. Santra S. Tetrahedron Lett.  2009,  50:  124 
  • 8 Ranu BC. Mandal T. Synlett  2007,  925 
  • 9 Griesbaum K. Angew. Chem., Int. Ed. Engl.  1970,  9:  273 
  • 10 Nicolaou G. Elemes Y. Tetrahedron Lett.  2008,  49:  6324 
  • 11a Sabitha G. Yadav JS. In Encyclopedia of Reagents for Organic Synthesis   Paquette LA. Wiley-VCH; Weinheim: 2006. 
  • 11b Bartoli G. Di Antonio G. Giovannini R. Giuli S. Lanari S. Paoletti M. Marcantoni E. J. Org. Chem.  2008,  73:  1919 
  • 11c Yadav JS. Subba Reddy BV. Suresh Reddy Ch. Krishna AD. Tetrahedron Lett.  2007,  48:  2029 
  • 11d Meng Q. Sun Y. Ratovelomanana-Vidal V. Genêt JP. Zhang Z. J. Org. Chem.  2008,  73:  3842 
  • 12a Silveira CC. Mendes SR. Libero FM. Lenardão EJ. Perin G. Tetrahedron Lett.  2009,  50:  6060 
  • 12b Silveira CC. Mendes SR. Tetrahedron Lett.  2007,  48:  7469 
  • 12c Silveira CC. Felix LA. Braga AL. Kaufman TS. Org. Lett.  2005,  7:  3701 
  • 12d Silveira CC. Bernardi CR. Braga AL. Kaufman TS. Tetrahedron Lett.  2003,  44:  6137 
  • 13 Cerium chloride was dried according to: Dimitrov V. Kostova K. Genov M. Tetrahedron Lett.  1996,  37:  6787 
  • 15 Verma AK. Singh J. Chaudhary R. Tetrahedron Lett.  2007,  48:  7199 
  • 16 Fernández-Rodríguez MA. Hartwig JF. J. Org. Chem.  2009,  74:  1663 
  • 17 Movassagh B. Navidi M. ARKIVOC  2008,  (xv):  47 
  • 18 Gajare AS. Sabde DP. Shingare MS. Wakharkar RD. Synth. Commun.  2007,  32:  1549 
14

Typical procedure for the synthesis of diorganyl sulfides 3: To a mixture of alkene 1 (1.0 mmol) and CeCl3 (0.0123 g, 0.05 mmol), was added thiol 2 (1.1 mmol). The reaction mixture was stirred at r.t. for the time indicated in Table  [²] (progress of the reaction was followed by GC). The resulting reaction mixture was extracted with EtOAc (3 × 10 mL) and the organic phase was washed with water, NaOH solution (2%) and then brine and dried over anhydrous MgSO4. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 5:95). Spectral data of selected compounds: 3a:¹5 ¹H NMR (200 MHz, CDCl3): δ = 1.20-2.10 (m, 10 H), 3.05-3.13 (m, 1 H), 7.16-7.51 (m, 5 H); ¹³C NMR (100 MHz, CDCl3): δ = 25.67, 25.92, 33.24, 46.42, 126.42, 128.60, 131.73, 135.12. 3b:¹6 ¹H NMR (200 MHz, CDCl3): δ = 0.87 (t, J = 6.8 Hz, 3 H), 1.25-1.54 (m, 10 H), 1.63 (quint, J = 7.2 Hz, 2 H), 2.90 (t, J = 7.2 Hz, 2 H), 7.13-7.33 (m, 5 H); ¹³C NMR (100 MHz, CDCl3): δ = 14.06, 22.61, 28.81, 29.10 (2C), 29.13, 31.76, 33.50, 125.54, 128.74 (2C), 137.03. 3f:¹7 ¹H NMR (200 MHz, CDCl3): δ = 2.84 (t, J = 7.48 Hz, 2 H), 3.04 (t, J = 7.48 Hz, 2 H), 3.78 (s, 3 H), 6.87 (d, J = 8.5 Hz, 2 H), 7.13-7.38 (m, 7 H); ¹³C NMR (100 MHz, CDCl3): δ = 35.85, 37.16, 55.26, 114.55, 126.26, 128.38, 128.45, 133.18 (2C), 140.31, 158.89. 3i:¹8 ¹H NMR (200 MHz, CDCl3): δ = 1.61-2.07 (m, 6 H), 3.57 (m, 1 H), 4.14 (m, 1 H), 5.17 (m, 1 H), 7.21 (d, J = 8.62 Hz, 2 H), 7.37 (d, J = 8.62 Hz, H); ¹³C NMR (100 MHz, CDCl3): δ = 21.45, 25.36, 31.36, 64.36, 85.23, 128.81, 132.11, 132.71, 133.81.