Synlett 2010(4): 547-550  
DOI: 10.1055/s-0029-1219181
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Synthesis of (S)-(-)-Umbelactone and Related α,β-Butenolides

William P. D. Goldring*, John Mann, Paul Brockbank
School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland BT9 5AG, United Kingdom
Fax: +44(0)2890976524; e-Mail: w.goldring@qub.ac.uk;
Further Information

Publication History

Received 14 October 2009
Publication Date:
15 January 2010 (online)

Abstract

The development of an asymmetric route for the synthesis of α,β-butenolide building blocks, starting from commercially available d-mannitol, is described. The devised route was applied to a synthesis of the (S)-(-)-enantiomer of the antiviral natural product umbelactone, together with the construction of other synthetically useful lactone structures.

    References and Notes

  • For recent examples, see:
  • 1a Rigano D. Grassia A. Bruno M. Rosselli S. Piozzi F. Formisano C. Arnold NA. Senatore F. J. Nat. Prod.  2006,  69:  836 
  • 1b Sobolev VS. Deyrup ST. Gloer JB. J. Agric. Food Chem.  2006,  54:  2111 
  • 1c Jones WP. Lobo-Echeverri T. Mi Q. Chai H.-B. Soejarto DD. Cordell GA. Swanson SM. Kinghorn AD. J. Nat. Prod.  2007,  70:  372 
  • 1d Ueoka R. Nakao Y. Fujii S. van Soest RWM. Matsunaga S. J. Nat. Prod.  2008,  71:  1089 
  • For recent applications of butenolides in synthesis, see:
  • 2a Doroh B. Sulikowski GA. Org. Lett.  2006,  8:  903 
  • 2b Tang B. Bray CD. Pattenden G. Tetrahedron Lett.  2006,  47:  6401 
  • 2c Li Y. Nawrat CC. Pattenden G. Winne JM. Org. Biomol. Chem.  2009,  7:  639 
  • 2d Weinreb SM. Nat. Prod. Rep.  2009,  26:  758 
  • For reviews on the synthesis of butenolides, see:
  • 3a Rao YS. Chem. Rev.  1976,  76:  625 
  • 3b Carter NB. Nadany AE. Sweeney JB. J. Chem. Soc., Perkin Trans. 1  2002,  2324 
  • 4 Agarwal SK. Rastogi RP. Phytochemistry  1978,  17:  1663 
  • 5a Caine D. Frobese AS. Ukachukwu VC. J. Org. Chem.  1983,  48:  740 
  • 5b For a later racemic synthesis of 1, see: Bonete P. Nájera C. J. Org. Chem.  1994,  59:  3202 
  • For syntheses of (+)-1 and/or (-)-1, see:
  • 6a Ortuño RM. Bigorra J. Font J. Tetrahedron  1987,  43:  2199 
  • 6b Sato T. Okumura Y. Itai J. Fujisawa T. Chem. Lett.  1988,  1537 
  • 6c Boeckman RK. Charette AB. Asberom T. Johnston BH. J. Am. Chem. Soc.  1991,  113:  5337 
  • 6d Gibson CL. Handa S. Tetrahedron: Asymmetry  1996,  7:  1281 
  • 6e Ha H.-J. Yoon K.-N. Lee S.-Y. Park Y.-S. Lim M.-S. Yim Y.-G. J. Org. Chem.  1998,  63:  8062 
  • 6f Liu HW. Li YL. Chin. Chem. Lett.  2005,  16:  716 
  • 6g Liu H. Zhang T. Li Y. Chirality  2006,  18:  223 
  • 6h Kamal A. Krishnaji T. Reddy PV. Tetrahedron Lett.  2007,  48:  7232 
  • 7 Deng J.-Z. Newman DJ. Hecht SM. J. Nat. Prod.  2005,  68:  465 
  • For recent, or related, syntheses of the butenolide structure, see:
  • 8a Mulzer J. Pietschmann C. Schöllhorn B. Buschmann J. Luger P. Liebigs Ann.  1995,  1433 
  • 8b Linclau B. Boydell AJ. Clarke PJ. Horan R. Jacquet C. J. Org. Chem.  2003,  68:  1821 
  • 8c Geraghty NWA. Hernon EM. Tetrahedron Lett.  2009,  50:  570 
  • 9 Kabeya M. Hamada Y. Shioiri T. Tetrahedron  1997,  53:  9769 
  • 10 For a related preparation of 8, see: White JD. Quaranta L. Wang G. J. Org. Chem.  2007,  72:  1717 
  • 11a Baer E. Fischer HOL. J. Biol. Chem.  1939,  128:  463 
  • 11b LeCocq J. Ballou CE. Biochemistry  1964,  3:  976 
  • 11c For a review, see: Jurczak J. Pikul S. Bauer T. Tetrahedron  1986,  42:  447 
  • 11d For other recent methods for the preparation of the aldehyde 19, see: Zhong Y.-L. Shing TKM. J. Org. Chem.  1997,  62:  2622 
  • 11e Palomo C. Oiarbide M. Landa A. Esnal A. Linden A. J. Org. Chem.  2001,  66:  4180 
  • 12a Emons CHH. Kuster BFM. Vekemans JAJM. Sheldon RA. Tetrahedron: Asymmetry  1991,  2:  359 
  • 12b For related procedures, see: Ruholl H. Schäfer HJ. Synthesis  1988,  54 
  • 12c Earle MJ. Abdur-Rashid A. Priestley ND. J. Org. Chem.  1996,  61:  5697 
  • 13a Tanner D. Somfai P. Tetrahedron  1987,  43:  4395 
  • 13b Toyama K. Iguchi S. Sakazaki H. Oishi T. Hirama M. Bull. Chem. Soc. Jpn.  2001,  74:  997 
  • 14 For a similar strategy, see: Tomioka K. Tanaka M. Koga K. Chem. Pharm. Bull.  1989,  37:  1201 
  • 15a Jacobi PA. Kaczmarek CSR. Udodong UE. Tetrahedron  1987,  43:  5475 
  • 15b Munier P. Krusinski A. Picq D. Anker D. Tetrahedron  1995,  51:  1229 
  • 15c Kis K. Wungsintaweekul J. Eisenreich W. Zenk MH. Bacher A. J. Org. Chem.  2000,  65:  587 
  • 15d Scholte AA. Vederas JC. Org. Biomol. Chem.  2006,  4:  730 
  • 17 Karioti A. Skaltsa H. Linden A. Perozzo R. Brun R. Tasdemir D. J. Org. Chem.  2007,  72:  8103 
16

Full experimental details for the compounds 2, 18, 23 and (S)-(-)-1, including proton and carbon NMR spectra, are available in the Supporting Information. The following spectroscopic data were recorded for key intermediates.
1-[( R )-2,2-Dimethyl-1,3-dioxolan-4-yl]-4-(4-methoxy-benzyloxy)butan-1-one (5). [α]D ²0 +1.6 (c 1.2 in CHCl3); IR(film): 2988, 2935, 2860, 1716, 1612, 1513, 1456, 1373, 1302, 1210 cm; ¹H NMR (300 MHz, CDCl3): δ = 7.25-7.22 (m, 2 H, ArH), 6.89-6.83 (m, 2 H, ArH), 4.40 (s, 2 H, OCH2PMP), 4.23 (dd, J = 7.7, 5.7 Hz, 1 H, OCHHCH), 4.17 (dd, J = 8.7, 8.0 Hz, 1 H, CH), 3.95 (dd, J = 8.7, 5.7 Hz, 1 H, OCHHCH), 3.80 (s, 3 H, OCH3), 3.45 (t, J = 6.2 Hz, 2 H, PMBOCH2), 2.70 (t, J = 7.2 Hz, 2 H, COCH2), 1.92-1.83 (m, 2 H, PMBOCH2CH 2), 1.47 (d, J = 0.6 Hz, 3 H, CH3), 1.38 (d, J = 0.6 Hz, 3 H, CH3); ¹³C NMR (75 MHz, CDCl3): δ = 210.4, 159.1, 130.4, 129.2, 113.7, 110.8, 80.2, 72.5, 68.8, 66.5, 55.2, 35.4, 26.0, 25.0, 23.1; HRMS (EI): m/z [M]+ calcd for C17H24O5: 308.1624; found: 308.1647 (5%).


1-[( R )-2,2-Dimethyl-1,3-dioxolan-4-yl]pent-4-en-1-one (9). [α]D ²0 +14.9 (c 1.0 in CHCl3); IR(film): 3079, 2988, 2934, 1716, 1641, 1373, 1217, 1068 cm; ¹H NMR (300 MHz, CDCl3): δ = 5.82 (ddt, J = 16.8, 10.4, 6.4 Hz, 1 H, H2C=CH), 5.08-4.95 (m, 2 H, C=CH2), 4.43 (dd, J = 5.5, 2.3 Hz, 1 H, OCHH), 4.19 (t, J = 7.7 Hz, 1 H, CH), 3.98 (dd, J = 5.5, 2.3 Hz, 1 H, OCHH), 2.74-2.68 (m, 2 H, COCH2), 2.37-2.29 (m, 2 H, H2C=CHCH 2), 1.48 (s, 3 H, CH3), 1.39 (s, 3 H, CH3); ¹³C NMR (75 MHz, CDCl3): δ = 210.1, 136.9, 115.3, 110.9, 80.2, 66.5, 37.7, 26.9, 26.0, 25.0.
4-( tert -Butyldimethylsilanyloxy)-1-[( R )-2,2-dimethyl-1,3-dioxolan-4-yl]butan-1-one (10). [α]D ²0 -0.4 (c 1.1 in CHCl3); IR(film): 2932, 2859, 1718, 1255, 1101 cm; ¹H NMR (300 MHz, CDCl3): δ = 4.44 (dd, J = 7.7, 5.6 Hz, 1 H, OCHH), 4.19 (dd, J = 8.7, 7.7 Hz, 1 H, CH), 3.98 (dd, J = 8.7, 5.7 Hz, 1 H, OCHH), 3.62 (t, J = 6.0 Hz, 2 H, TBSOCH2), 2.69 (t, J = 7.0 Hz, 2 H, COCH2), 1.83-1.74 (m, 2 H, TBSOCH2CH 2), 1.48 (s, 3 H, CH3), 1.39 (s, 3 H, CH3), 0.88 (s, 9 H, Si(CH3)3), 0.03 (s, 6 H, Si(CH3)2); ¹³C NMR (75 MHz, CDCl3): δ = 210.8, 110.9, 80.3, 66.5, 62.0, 35.0, 26.0, 25.9, 25.0, 18.3, -5.4; HRMS (ES): m/z [M + Na]+ calcd for C15H30O4SiNa: 325.1811; found: 325.1834 (20%).
tert -Butyl-{4-[( S )-2,2-dimethyl-1,3-dioxolan-4-yl]pent-4-enyloxy}dimethylsilane (11). [α]D ²0 +6.0 (c 0.9 in CHCl3); IR(film): 2928, 2857, 1650, 1471, 1379, 1256, 1214 cm; ¹H NMR (300 MHz, CDCl3): δ = 5.15 (br s, 1 H, C=CHH), 4.90 (t, J = 0.7 Hz, 1 H, C=CHH), 4.53 (t, J = 7.5 Hz, 1 H, OCHH), 4.11 (dd, J = 8.0, 6.5 Hz, 1 H, CH), 3.65-3.58 (m, 3 H, OCHH and TBSOCH2), 2.13-1.97 (m, 2 H, H2C=CCH 2),
1.74-1.64 (m, 2 H, TBSOCH2CH 2), 1.44 (m, 3 H, CH3), 1.40 (s, 3 H, CH3), 0.89 (s, 9 H, Si(CH3)3), 0.04 (s, 6 H, Si(CH3)2); ¹³C NMR (75 MHz, CDCl3): δ = 146.7, 111.1, 109.6, 79.4, 69.4, 63.1, 31.5, 28.1, 26.8, 26.3, 26.1, 18.7,
-4.9.